MICRONANOFAB

Fabrica microfluidica pentru auto-asamblarea asistata a nanosistemelor


Program Operational Sectorial "Cresterea Competitivitatii Economice"
"Investitii pentru viitorul dumneavoastra"

 

 

home
   

Program Operational Sectorial "Cresterea Competitivitatii Economice"
"Investitii in viitorul dumneavoastra"

   
 
Contact | Pagina principala
 
Contact
 
 

REZULTATE ETAPA I

- Au fost realizate studii experimentale de evaluare a eficientei a trei tipuri de sticla pentru microfluidica (sticla Hoya SD – 2; sticla SODA LIME si sticla Corning 7740).
- Aceste studii au stat la baza selectiei tipului optim de sticla pentru realizarea ulterioara a platformelor microfluidice. In urma experimentelor a rezultat ca tipul optim de sticla pentru realizarea platformelor microfluidice este Corning 7740
- A fost dezvoltata tehnologia de corodare a sticlei prin masti metalice care au stress tensil (CrAu, TiAu, CrCu)
- A fost dezvoltata tehnologia de obtinere a matritelor din SU8 pentru realizarea platformelor microfluidice in PDMS pe substrat de sticla, prin tehnici de corodare umeda si corodare uscata
- S-a facut analiza si selectia optiunilor tehnice si s-au lansat comenzile pentru achizitia materialelor necesare  realizarii miniechipamentului de corodare uscata cu XeF2: tipuri de senzori de gaz necesari, manometre, reductoare de presiune, tipul si caracteristicile pompei de vid si conectica necesara, tipuri de filtre utilizabile, selectia electrovanelor optime pentru gazele obtinute prin sublimarea cristalelor de XeF2
- S-a realizat proiectul tehnic de constructie a miniechipamentului de corodare uscata cu XeF2

  • a fost proiectata structura mecanica a miniechipamentului;
  • a fost proiectat sistemul de distributie a gazelor
  • au fost proiectate sistemele de comanada (hardware)
  • a fost proiectata interfata de comanda si control a miniechipamentului

    Bibliografie


    [1]. Tresset, G. & Iliescu, C. Electrical control of loaded biomimetic femtoliter vesicles in microfluidic system. Appl. Phys. Lett. 90, 173901 (2007).

    [2]. Tresset, G. & Takeuchi, S. A microfluidic device for electrofusion of biological vesicles. Biomed. Microdevices 6, 213–218 (2004).

    [3]. Wang, J. & Lu, C. Microfluidic cell fusion under continuous direct current voltage. Appl. Phys. Lett. 89, 234102 (2006).

    [4]. Khine, M., Lau, A., Ionescu-Zanetti, C., Seo, J. & Lee, L.P. A single cell electroporation chip. Lab Chip 5, 38–43 (2005).

    [5]. Lee, P.J., Hung, P.J., Shaw, R., Jan, L. & Lee, L.P. Microfluidic applicationspecific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs. Appl. Phys. Lett. 86, 223902 (2005).

    [6]. Khine, M., Ionescu-Zanetti, C., Blatz, A., Wang, L.P. & Lee, L.P. Single-cell electroporation arrays with real-time monitoring and feedback control. Lab Chip 7, 457–462 (2007).

    [7]. Valero, A., Post, J.N., van Nieuwkasteele, J.W., Ter Braak, P.M., Kruijer, W. & van den Berg, A. Gene transfer and protein dynamics in ste cells using single cell electroporation in a microfluidic device. Lab Chip 8, 62–67 (2007).

    [8]. Di Carlo, D., Aghdam, N. & Lee, L.P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 78, 4925–4930 (2006).

    [9]. Sowers, A.E. Characterization of electric field-induced fusion in erythrocyte ghost membranes. J. Cell Biol. 99, 1989–1996 (1984).

    [10]. Silva, J., Chambers, I., Pollard, S. & Smith, A. Nanog promotes transfer of pluripotency after cell fusion. Nature 441, 997–1001 (2006).

    [11]. Wong, C.C., Gaspar-Maia, A., Ramalho-Santos, M. & Reijo Pera, R.A. Highefficiency stem cell fusion-mediated assay reveals Sall4 as an enhancer of reprogramming. PLoS ONE 3, e1955 (2008).

    [12]. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-celllike state. Nature 448, 318–324 (2007).

    [13]. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    [14]. Rosenthal, A., Macdonald, A. & Voldman, J. Cell patterning chip for controlling the stem cell microenvironment. Biomaterials 28, 3208–3216 (2007).

    [15]. J. West, M. Becker, S. Tombrink, A. Manz „Micro total analysis systems: Latest achievements” Anal. Chem. 80/12, 2008

    [16]. AM Skelley, O Kirak, H Suh, R Jaenisch, J Voldman „Microfluidic control of cell pairing and fusion”, Nature Methods, 2009

    [17]. Iliescu, C.; Miao, J.; Tay, F.E.H. Sens. Actuators A Phys. 2005, vol. 117, pp. 286-292

 
Top
 
home

Proiect cofinantat prin Fondul European de Dezvoltare Regionala.
Pentru informatii detaliate despre celelalte programe operationale cofinantate de Uniunea Europeana va invitam sa vizitati www.fonduri-ue.ro.
Continutul acestui material nu reprezinta in mod obligatoriu pozitia oficiala a Uniunii Europene sau a Guvernului Romaniei.
Copyright © 2010 | Toate drepturile rezervate.