ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 10, Number 4, 2007, 323-333

An externalization of the k-d tree

M. ADAM

Department of Mathematics and Computer Science,
University of Bucharest
Str. Academiei 14, Bucharest, Romania

E-mail: madam@math.math.unibuc.ro

Abstract. External searching is a fundamental problem with many appli-
cations in relational, object-oriented, spatial and temporal databases. The k-d
tree or the multi-dimensional binary search tree used for associative searching,
developed by J. L. Bentley in 1975, is an internal memory data structure. In this
paper we develop an externalization of the k-d tree which occupies linear space,
answers an orthogonal range query in square root time and supports updates in
logarithmic time amortized.

Keywords: k-d tree, B-tree, orthogonal range searching, indexing, global
rebuilding.

1. Introduction

External two-dimensional searching appears under different forms in practical ap-
plications, specially in databases domain. In the last years there has been much effort
toward developing worst-case I/O-efficient external memory data structures for range
searching in two dimensions by transforming a number of time/space efficient data
structures for internal memory into I/O-efficient external ones.

This paper considers the k-d tree in two-dimensional space and develops an exter-
nalization of this data structure which preserves its space and time worst-case optimal
bounds.

1.1. Memory model and related research

Given a set of N points in the plane we want to be able to find efficiently all
points p(x, y) contained into the query rectangle g (21, y1, x2, y2) with lower-left corner
(21,y1) and upper-right corner (z2,y2) i.e. 21 < 2 < 9 and y; < y < yo. Let 4

324 M. Adam

be their number, M the number of points that can fit into internal memory and
B the size of a disk block (B < M < N). For notational simplicity, we define
n = N/B, m = M/B and a = A/B to be the data set size, the internal memory
size and, respectively, the query output size in units of blocks rather than points.
An TI/0 operation (or simply I/0) is defined as a transfer of a block of data between
internal and external memory. Computation can only be performed on objects in
internal memory. The measures of performance in this model are the number of 1/0s
used to solve a problem and the amount of space used on disk, internal computation
time being ignored. As practical values for the parameters defined above we have:
B =103 M =105 N = 10'° or 10*2.

B-tree is the most fundamental one-dimensional external memory data structure,
developed by Bayer and McCreight [4], which corresponds to the internal memory
balanced search tree. It uses linear space (O(n) disk blocks) and supports updates
in O(logg N) I/Os. One-dimensional range queries, asking for all elements in the
tree contained in the query interval can be answered in O(logg N + a) I/Os. The
space, update and query bounds obtained by the B-tree are the bounds we would
like to obtain (optimal bounds) in general for more complicated problems. The above
bounds have already been obtained for the two special cases of two-dimensional range
searching: diagonal corner query and 3-sided planar query.

For two-dimensional range search, Subramanian and Ramaswamy [12] proved that
O(logs N) query require Q((N/B)(logg N/ logg logp N)) space, for any constant ¢ >
1, in a natural external memory version of the pointer machine model of Chazelle [6].
A similar bound in a slightly different model using their optimal structure for 3-sided
queries, was proved by Arge and al. [2] (logarithmic query structure). Kanth and
Singh proved that O(n) space requires 2(y/n) query time and they obtained for their
O-tree [9] the same bounds using ideas similar to the ones used by van Kreveld and
Overmars in divided k-d trees [10]. In [3] is described an O-tree slightly different than
the structure developed by Kanth and Singh, which uses an external k-d-tree at the
terminal level. Grossi and Italiano [8] developed the elegant linear space cross-tree,
which answers queries in O(v/n + a) 1/Os. The external k-d-tree, the O-tree and the
cross-tree, named linear space structures, can all be extended to d-dimensions in a
straightforward way obtaining a O(n'~1/¢ + a) I/Os query bound.

Many other external data structures based on the partitioning of the data points
or of the embedded space, such as grid files, various quad-trees, space-filling curves,
k-d-B trees, hB-trees and various R-trees have been proposed. Often, these structures
are preferred in applications, because they are relatively simple, require linear space
and in practice perform well most of the time. However, they all have highly subopti-
mal worst-case performance, which deteriorates after repeated updates. The relevant
literature is vast and was surveyed in [7], [13].

1.2. Overview of our results

Our main result in this paper is an optimal space, update and query time external
memory data structure for two-dimensional orthogonal range searching, obtained by
externalizing the well-known k-d tree.

An externalization of the k-d tree 325

In Section 2 we remember, in a few words, the standard k-d tree and review its
main performances, emphasizing the fact that it is a static search structure.

In Section 3 we describe our idea to externalize the k-d tree using a B-tree variant.
Here we give an algorithm for the construction of a dynamic index by splitting an
overflowed internal node and local rebuilding the subtree rooted in it.

In Section 4 we present and analyze the basic operations on our external k-d tree.
The search operations are represented by point query and orthogonal range query.
Next we describe the strategy to rebalance the tree as a consequence of repeated
updates and we calculate the amortized cost of this operation. Finally, we present in
detail the insertion and deletion of a data point together with an amortized cost per
update operation.

2. The structure in internal memory

Bentley’s k-d tree [5] is a binary search tree that generalizes the 1-d tree or the
ordinary binary search tree to R*. The most common variant of the point k-d tree
in R? (and the one we focus in this section) partitions the underlying space with the
N data points by cycling through the two axis in a predefined and constant order.
We obtain a binary tree of height O(log, N) with the N points stored in its leaves.
The internal nodes represent a recursive decomposition of the plane by means of axis-
orthogonal lines that partition the set of points into two subsets of equal size. In this
way, with each node v of the tree is naturally associated a rectangular region R,, and
the nodes on any given level of the tree partition the plane into disjoint regions. In
particular, the regions associated with the leaves represent a partition of the plane
into rectangular regions containing exactly one point each.

The following theorem synthetizes the performances of the k-d tree [5].

Theorem 1. Given N data points in the plane, a k-d tree can be built by inserting
points in random order into an initially empty tree in time O(N logy N), the average
cost of insertion, as well as of searching for a point is O(logy N). Deletion of nodes
from k-d trees is considerably more complex than for binary search trees (unlike the
binary search tree, not every subtree of a k-d tree is itself a k-d tree), its cost being
dominated by O(V/'N), but in the average is still O(logy, N). Finally, the cost of a
range search is O(2v/'N).

The expected performance of a k-d tree holds under the assumption that it is
random. However, in practical applications, this assumption does not always hold.

Unfortunately, it is difficult to maintain a balanced tree structure over inser-
tions/deletions of data points, so the k-d tree remains an efficient static search struc-
ture.

3. An external dynamic k-d tree

From the previous section, the k-d tree is a binary tree having in its leaves the
data points. We know that B-tree is a fundamental one-dimensional external memory

326 M. Adam

data structure which uses linear space and supports queries and updates in logarithmic
time. In order to obtain an externalization of the k-d tree similar to a B-tree, we
will build a tree structure of order B with O(n) leaves containing between B/2 and
B data points each.

Lemma 1. A static external k-d tree for storing a set S of N data points in the
plane, given a priori, uses linear space and can be constructed in O(nloggn) 1/0s.

Proof. We first create, with O(nlog,, n) I/Os, two lists with the points in S, one
sorted by z-coordinates and the other sorted by y-coordinates. Then, we create the
index tree structure T top-down with the following recursive algorithm:

(1) If we consider to begin partitioning of S with the z-coordinate, we scan the
list sorted by a-coordinates and determine the O(B) vertical split values which
make the root of T'.

(2) Then, we partition the two sorted lists according to these values in O(B) sublists
with O(n) I/Os and continue the partitioning by y-coordinates.

(3) In this way, we recursively construct the rest of the tree, level by level, the
process being stopped when the sublists resulted by partitioning have between
B/2 and B data points each.

The tree T resulted has height logzn, O(n) leaves with points, O(n) internal
nodes with the partitioning (routing) values and therefore its construction cost is
O(nloggn) I/0s. O

In order to maintain a balanced tree structure over updates of data points, we

make some remarks:

e The routing values in internal nodes of the tree cannot move from one level to
another adjacent level in the tree, due to the fact that there is no total order in
the plane.

e The split of an internal node that points to O(B) blocks with O(B) data points
each, by a value belonging to the orthogonal axis, will charge O(B) points 1
1/0.

e In a tree where every two adjacent levels have internal nodes with routing values
from two different axis, a node split propagation up to the root is a costly
operation.

With these remarks in mind, we begin the construction of a dynamic index in the

following way:

(1) We start with one block of data points which is divided repeatedly in the same
direction, say z-axis, until we obtain the ©(B) partitioning points that make
the first internal node r of the tree.

(2) Later, when one of its ©(B) leaves overflows, r will split in the orthogonal
direction into two nodes of equal size, and the partitioning value on the y-axis
will make the new root. An example with a 2-3-4 search tree is presented in
Fig. 1.

An externalization of the k-d tree 327

(3) The tree construction continues upwards: if a data block overflows and its parent
is full, the split will take place before the first not full internal node on the path
up to the root.

Finally, the tree obtained has all leaves with data blocks on the last level, the
internal nodes from one given level contain routing values on the same axis and two
adjacent levels correspond to orthogonal axis. Here, we must say that the tree grows
due to a node split, a costly operation which implies the local rebuilding of the subtree
with the root in that node (Lemma 1).

split v
O OJ
X
]]
~. g "
overflow

Fig. 1. An overflow at the blackened leaf produces a split of its parent.

There is yet another idea to construct a dynamic index, slightly different from
that already presented:

(1) We start with one block of points which is divided repeatedly in the same
direction, say z-axis, until we obtain the ©(B) routing values of the tree root r.

(2) Then, when one of its ©(B) leaves overflows, this block will be divided in the
orthogonal direction (y-axis). Therefore, the data blocks may appear on the
last two levels of the tree. This situation is presented in Fig. 2.

Remark. Due to this partitioning in another direction that advances downwards
the tree, it will appear internal nodes having degree less than B/2 that have to
be grouped in blocks in order to better use the space.

(3) When during this process a data block overflows and its partitioning determines
the appearance of data blocks on a third level in the tree, it requires a split before
the first not full internal node on the ascending path to the root (Figure 2).

Remark. In this way, the tree grows upwards too and its balance is improved.

B 000

>
overflow
Fig. 2. An overflow at the blackened leaf produces a split of the root,

which improves the balance of the tree.

328 M. Adam

The tree construction continues by cycling through the two orthogonal directions,
downwards or upwards. In the case of random data points we can reduce the number
of node splits and the tree grows especially downwards.

With the first construction algorithm, we can formulate the following definition of
this external k-d tree.

Definition. An external 2-d tree T is a B-tree variant with the following prop-
erties:

e All leaves of T' (blocks with data points) are on the last level of the tree and
contain between B/2 and B points each.

e All internal nodes on the same level of T contain branching values from one axis
and have degree between B/2 and B (the root has degree between 2 and B).

e The two axes come in cyclic order from the last level upwards the tree, until a
certain condition is verified, as we will see in the next section, when one axis is
maintained constant till the root of T'.

4. Basic operations on the structure

Now, we will present and analyze the query and the maintenance of the external
k-d tree T constructed on a set S of N data points in the plane which changes
dynamically. Although there are several search algorithms for partial match, exact
match and variants of nearest neighbor queries in k-d trees, we will consider here
only point query and orthogonal range query. As concerns the maintenance of the
structure, we will discuss the insertion/deletion of individual points, by developing
algorithms efficient in the amortized sense (taking a sequence of update operations).

4.1. Query

A point query on S, that is a search for a given point pg, can obviously be answered
in O(logg n) I/0s by following one root-to-leaf path in T’ corresponding to all nodes
v whose region R, associated contains py.

A range query ¢ (z1,y1,22,y2) on S can be answered with a simple recursive
procedure starting at the root r of T' and advancing the query to its child v if ¢
intersects the region R, associated with v. At a leaf u we return the points in
contained in ¢. If on the first ¢ levels in T it partitions with the same type of lines,
say verticals, we descend in 1" with x; and x5 ¢ levels, in order to find the subtrees
with roots on this level, which contain points in q. Their number is a constant for a
large B and each of them intersects ¢ with the cost that will be established below.
Let T be of this type, with all internal nodes having ©(B) children. To bound the
number of nodes in T visited when answering ¢, or equivalently, the number of nodes
v where R, intersects g, we must bound the number of nodes v where R, intersects
a vertical /horizontal line I. We suppose that [is a vertical line and the root r of
T corresponds to z-axis. The region R, associated with r is obviously intersected
by I, but as the regions associated with its ©(B) children represent a subdivision of
R, with vertical lines, only one region R, associated with its child v is intersected.

An externalization of the k-d tree 329

Because the region R, is next subdivided by horizontal lines, the regions associated
with all ©(B) children of v are intersected by I. Let L = O(n) be the number of leaves
in T. As the children of v are roots of subtrees in T having L/B? leaves each, the
recurrence for the number of regions intersected by [is Q(L) = 2+ B-Q(L/B?). This
is a general divide-and-conquer recurrence of the form Q(L) = a - Q(L/b) + ¢, with
c=2,a= B and b = B%, which has the solution © (LlogB2 B) =0 (LI/Q). Similarly,
we can show that the number of regions intersected by a horizontal line is © (Ll/ 2).
Till now, we considered T full, but as a dynamic structure, each internal node of it has
between B/2 and B children. It exists, obviously, B/2 < B* < B, so that T can be
rebuilt with the same height and having each internal node with exactly B* children,
in order to be verified the previous recurrence. In the worst case, when 7" is dynamic,
we obtain Q(L) < 2+ B-Q (L/ (B?/2)), with the solution Q(L) = O (L'/?*¢), where
e = f(B) is a decreasing function with values in (0,1/2] and close to 0 for a large B.
Therefore, the number of nodes v with regions R, intersected by the boundary of ¢
is O(y/n).

All the additional nodes visited when answering g correspond to regions completely
inside ¢. Since a region R, corresponding to an internal node v is only completely
contained in ¢ if the regions corresponding to all the leaves in the subtree with the
root v are contained in g, the total number of regions completely inside ¢ is O(A/B),
where A is the size of the answer to gq. Also, O(A/B) is the number of leaves with
regions completely inside g, since each leaf contains ©(B) points.

Therefore, the previous analysis leads to the following result.

Lemma 2. An external k-d tree for storing N points in the plane supports point
queries in O(logg n) I/0s and orthogonal range queries in O(\/n+ A/B) I/0s, where
A is the size of the answer.

4.2. Updates

During the insertion/deletion of points in/from an external k-d tree T built with
N data points, its structure may become out of balance and the searching time will
grow due to this fact. In order to rebalance the tree we utilize a local rebuilding
strategy, that will be described and analyzed next.

Let p(x,y) be the data point whose insertion produces an overflow at the leaf
and if [splits, parent(l) must split too. Let w be the child of the first not full internal
node on the ascending path from [to the root of T. In Fig. 3 is shown an example
with the same 2-3-4 search tree and the situation described above. If w splits, a
new routing value and a reference will be inserted in parent(w), but this value must
be a y-coordinate. Therefore, the entire subtree rooted in w will be rebuilt with
(0] (% logp %) I/0s, where Ny is the number of data points in its leaves (Lemma
1). In other words, with O (4§¢hg) I/Os we can rebalance a subtree with height hq
having Ny data points, and insert a new routing value in the parent node of its root
on the level hg + 1. So, by repeating the operation, this node will become full and
will split.

330 M. Adam

Fig. 3. An overflow at the leaf | produces directly the split of w.

To draw a conclusion, supposing level k in T', the number of I/Os necessary to fill
up an internal node on level k 4 1 is given by the following expression:

<~<(ﬂwXB»§+2IXB%>§+3%XBﬂ>§+~~+kIXB%>§:

(...(<11+2)1+3) 1+-~-+k) 1B*0(B) = arB*-O(B), (1)

2 2 2 2 2k
where (1-O(B)) £ 1/Os produce an overflow at level 1, 2- O (B?) I/Os is the cost of
rebuilding a subtree with 2 levels, ... and ay, is given by the recurrence:
a; =1-2" Y+ a1, with i>1 and a1 = 1. (2)

On the other hand, the number of data points that need to be inserted in 7 in
order to have an overflow at an internal node on level k41 results from the expression:

<m<«§mm>§+§mm>§+§mm>§+m+§mm>§
<§)k+1' 0B) + <§>k.0(3)+...+ (§>2.0(3) -

G @ om (B om o

where 20(B) inserted points produce an overflow at level 1, (20(B)) £ points fill
up an internal node at level 2 which is overflowed by another gO(B) inserted points,
etc.

An externalization of the k-d tree 331

Therefore, from the expressions (1) and (3) we obtain the condition to amortize
the I/Os at the insertion of data points, i.e. the maximum level number 4 for which

This condition says that, if during the update of T', its subtree Ty which has been
changed becomes out of balance, the cost of local rebuilding Ty amortizes only if its
helght h() S 7.

Now we can describe in detail the basic update operations.

Insert. To perform the insertion of a point p(z,y) in T we execute the following
steps:

(1) Starting from the root, we perform a point query to find the leaf | with the
region R; associated containing p and insert p in [. On this descending path we
keep the address of the last not full internal node u (with < B children).

(2) If I now contains B + 1 points and u = parent(l), we simply split ! into two
leaves containing B/2 points each, using a line with the same inclination as the
routing values in parent(l), which will be inserted in parent(l).

(3) If I contains B + 1 points and u # parent(l), we must split the descendant(u)
on the path to [and insert a routing value in u thus: if the level corresponding
to descendant(u) is at most 4, from relation (4), we make a local rebuilding of
the subtree rooted in descendant(u), else we rebuild the subtree rooted in the
internal node on level 7 and continue to split all nodes up to descendant(u), all
routing values inserted being on the same predefined axis.

So, the tree resulted is shown in Fig. 4, where all leaves are on level 0, between
levels 1 and i the axes come in cyclic order and then till the root a predefined axis is
maintained constant.

level Ioan

level |

level 1

[N [N |a/e|0
1 EEEEESR n

Fig. 4. A schematic representation of the external k-d tree.
The complexity of inserting p in T" with N points follows from: O (log B %) I/0s

to find the leaf I, O(1) I/Os amortized to rebuild a subtree with height hg < ¢ and
O(1) I/0s for every additional split up till the root of T.

332 M. Adam

Delete. Similarly, to delete a point p(z,y) from T' we perform the following steps:

(1) At first, we find and remove p from the relevant leaf I. On the descending
path we keep the address of the last not half-full internal node u (with > B/2
children).

(2) If I now contains B/2 — 1 points, we fuse it with one of its siblings I, i.e., we
delete I’ and insert its points in I. If this results in / containing more than B
points, we split it into two leaves and update the corresponding routing value
from parent(l) (share).

(3) If I, after fusing, contains at most B points and u = parent(l), we delete the
respective routing value from parent(l), its degree decreasing by one.

(4) If I, after fusing, contains at most B points and u # parent(l), fuse operations
on internal nodes may propagate up till descendant(u) and we’ll act in this
way: if on the ascending path to u we find an internal node half-full (with
B/2 children) v, which has one of its siblings v’ not half-full, we make a local
rebuilding of the subtree rooted in the partitioning value between v and v" and
update this value from parent(v) (share), else let v = descendant(u) and we
make a local rebuilding of the subtree rooted in the partitioning value from u
between v and one of its siblings, which is half-full too, this triplet from u being
replaced by the address of the new subtree’s root; as before at insertion, if the
level corresponding to the root w of the rebuilding subtree is at most i, from
relation (4), we make a local rebuilding of w, else we rebuild the subtree rooted
in the internal node on level i and continue fusing up till at most parent(v).

Another strategy to deal with deletions is to mark the deleted point in its leaf and
to cover it later with an inserted point, and also ,periodically, rebuild the structure
after a specified number of deletions.

The complexity of deleting p from T is of the same type as at insertion and we
can formulate a concluding result.

Lemma 3. An external k-d tree on N points in the plane supports updates in
O(logg n) I/Os amortized.

Therefore, based on the three previous lemmas, we can give the final result which
is optimal.

Theorem 2. An external k-d tree for storing a set of N points in the plane
uses linear space and supports point queries in O (logB %) I/0s, orthogonal range
queries in O(y/N/B + A/B) I/Os, where A is the size of the answer and updates in
O (logg %) 1/0Os amortized.

5. Conclusions

In this paper we developed an external k-d tree in the plane with optimal worst-
case bounds for time and space. Its dynamization uses a local rebuilding strategy

An externalization of the k-d tree 333

which makes updates optimal in the amortized sense. Although, we do not discuss
here about the implementation details of the structure, we appreciate these important
in order to reduce the rebuilding time. In connection with this subject, comes the gen-
eralization of this structure in higher-dimensional space. The practical performance
of this worst-case efficient external memory structure also needs to be investigated.

References

(1]

[10]

[11]

[12]

[13]

AGARWAL P. K., ARGE L.,PROCOPIUC O.,VITTER J. S., A framework for index
bulk loading and dynamization, in Proc. International Colloquium on Automata, Lan-
guages and Programming, LNCS 2076, pp. 115-127, 2001.

ARGE L.,.SAMOLADAS V., VITTER J. S., On two-dimensional indezxability and op-
timal range search indexing, in Proc. ACM Symp.Principles of Databases Systems,
pp. 346-357, 1999.

ARGE L., Ezternal Memory Geometric Data Structures, EEF Summer School on Mas-
sive Datasets, Springer Verlag, 2004.

BAYER R.,McCREIGHT E., Organization and maintenance of large ordered indexes,
Acta Informatica, 1, pp. 173-189, 1972.

BENTLEY J. L., Multidimensional binary search trees used for associative searching,
Communications of the ACM, 18, pp. 509517, 1975.

CHAZELLE, B., Lower bounds for orthogonal range searching, Journal of the ACM,
37(2), pp. 200-212, 1990.

GAEDE V., GUNTER O., Multidimensional access methods, ACM Computing Surveys,
30(2), pp. 170-231, 1998.

GROSSI R., ITALTIANO G. F., Efficient cross-tree for external memory, in Abello
J. and Vitter J. S., editors, Ezxternal Memory Algorithms and Visualization, pp. 87—
106, American Mathematical Society, DIMACS series in Discrete Mathematics and
Theoretical Computer Science, 1999.

KANTH K. V. R., SINGH A. K., Optimal dynamic range searching in non-replicating
index structures, in Proc. International Conference on Database Theory, LNCS 1540,
pp. 257276, 1999.

VAN KREVELD M. J., OVERMARS M.H., Divided k-d trees, Algorithmica, 6, pp. 840—
858, 1991.

PROCOPIUC O., AGARWAL P. K., ARGE L.,VITTER J. S., Bkd-tree: A dynamic
scalable kd-tree, in Proc. International Symposium on Spatial and Temporal Databases,
LNCS 2750, 2003.

SUBRAMANIAN S., RAMASWAMY S., The P-range tree: A new data structure for
range searching in secondary memory, in Proc. ACM-SIAM Symposium on Discrete
Algorithms, pp. 378-387, 1995.

VITTER J. S., Ezxternal memory algorithms and data structures, in Abello J. and Vit-
ter J. S., editors, External Memory Algorithms and Visualization, pp. 1-38, American
Mathematical Society, DIMACS series in Discrete Mathematics and Theoretical Com-
puter Science, 1999.

