Foundation of the Rewriting in an Algebra ${ }^{1}$

V. E. CĂZĂNESCU
Department of Mathematics and Computer Science,
University of Bucharest
Str. Academiei 14, Bucharest, Romania

Abstract

This paper includes two main ideas. The first one, rewriting in an algebra, was introduced in [5]. The second one, boolean rewriting, can be found in many papers but we were never able to find a clear comparison with the classic one. We prefer rewriting in an algebra to term rewriting. This is our way to give a unique theory of rewriting. If the algebra is free, then we get the term rewriting. If the algebra is a certain quotient of a free algebra then we get rewriting modulo equations. Rewriting is said to be boolean when the condition of each conditional equation is of boolean sort(in the free algebra it is a boolean term). We prove the classic rewriting is equivalent to boolean rewriting in a specific algebra, therefore, boolean rewriting is more general than the classic one.

1. Preliminaries

Let Σ be an algebraic S-sorted signature. Let X be an S-sorted set of variables. Let $T_{\Sigma}(X)$ be the Σ-algebra freely generated by X.

Let $\mathcal{A}=\left(\left\{A_{s}\right\}_{s \in S},\left\{A_{\sigma}\right\}_{\sigma \in \Sigma}\right)$ be a Σ-algebra and let z be a variable of sort s, $z \notin A_{s}$. Let $\mathcal{A}[z]$ be a shorter notation for $T_{\Sigma}(A \cup\{z\})$ the Σ-algebra freely generated by $A \cup\{z\}$. An element c from $\mathcal{A}[z]$ is said to be context if the number of the occurences of z in c is 1 . If $c=\sigma\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is a context then there exists $1 \leq i \leq n$ such that c_{i} is a context and $c_{j} \in T_{\Sigma}(A)$ for each $j \neq i$.

For $d \in A_{s}$, let $z \leftarrow d: \mathcal{A}[z] \longrightarrow \mathcal{A}$ be the unique morphism of Σ-algebras such that $(z \leftarrow d)(z)=d$ and $(z \leftarrow d)(a)=a$ for each $a \in A$. For each t in $\mathcal{A}[z]$ and $a \in A_{s}$, we prefer to write $t[a]$ instead of $(z \leftarrow a)(t)$.

[^0]
1.1. Deduction Rules

We list some families of deduction rules in the set of the formal equalities in a fixed Σ-algebra \mathcal{A}. There is no essential difference between a set of formal equalities in A and a relation in A. These rules are called Reflexivity, Transitivity, Compatibility with the operations in Σ and Compatibility with each Argument of the operations in Σ :

R $\quad a \doteq_{s} a$ for each $s \in S$ and $a \in A_{s}$,
T $a \doteq_{s} b$ and $b \doteq_{s} c$ imply $a \doteq_{s} c$ for each $s \in S$ and $a, b, c \in A_{s}$,
$\mathbf{C \Sigma} \quad a_{i} \doteq{ }_{s_{i}} c_{i}$ for all $i \in[n]$ imply $A_{\sigma}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \doteq{ }_{s} A_{\sigma}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ for each $\sigma \in \Sigma_{s_{1} s_{2} \ldots s_{n}, s}$
$\mathbf{C A} \Sigma \quad a \doteq_{s_{i}} d$ implies
$A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right) \doteq_{s} A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, d, a_{i+1}, \ldots, a_{n}\right)$
for each $\sigma \in \Sigma_{s_{1} \ldots s_{n}, s}$, each $i \in[n]$, where $a_{j} \in A_{s_{j}}$ for each $j \in\{1, \ldots, i-1, i+1, \ldots, n\}$ and $a, d \in A_{s_{i}}$.
Definition 1. A set of the formal egalities in the algebra \mathcal{A} is said to be reflexive, transitive, compatible with operations or compatible with arguments if it closed under $\mathbf{R}, \mathbf{T}, \mathbf{C} \Sigma$ or $\mathbf{C A} \Sigma$, respectively.

1.2. Context Closure

Definition 2. A set of the formal egalities Q in the algebra \mathcal{A} is said to be context closed if for each context c and for each pair of elements a, d in $A, a \doteq_{s} d \in Q$ implies $c[a] \doteq c[d] \in Q$.

Proposition 3. A relation is context closed if and only if it is compatible with arguments.

Proof. Suppose Q is context closed. To prove the compatibility with arguments we apply the hypothesis for the context $\sigma\left(a_{1}, \ldots, a_{i-1}, z, a_{i+1}, \ldots, a_{n}\right)$.

Conversely, the result is proved by structural induction in $\mathcal{A}[z]$ for contexts.
For $c=z$. For each $a \doteq_{s} d \in Q, c[a]=a, c[d]=d$, therefore $c[a] \doteq_{s} c[d] \in Q$.
For a context $c=\sigma\left(a_{1}, \ldots, a_{i-1}, c^{\prime}, a_{i+1}, \ldots, a_{n}\right)$ where $c^{\prime} \in \mathcal{A}[z]$ is a context and $a_{i} \in T_{\Sigma}(A)$ for each i

$$
c[a]=(z \leftarrow a)(c)=A_{\sigma}\left(a_{1}[a], \ldots, a_{i-1}[a], c^{\prime}[a], a_{i+1}[a], \ldots, a_{n}[a]\right)
$$

and $c[d]=A_{\sigma}\left(a_{1}[d], \ldots, a_{i-1}[d], c^{\prime}[d], a_{i+1}[d], \ldots, a_{n}[d]\right)$. Moreover $a_{i}[a]=a_{i}[d]$ for each i.
From inductive hypothesis $c^{\prime}[a] \doteq c^{\prime}[d] \in Q$ and using the compatibility with arguments we get $c[a] \doteq c[d] \in Q$.

Definition 4. For each relation Q on A we denote $\longrightarrow_{Q}=\left\{c[a] \doteq c[d]: a \doteq_{s}\right.$ $d \in Q_{s}, c \in \mathcal{A}[z]$ is a context where the variable z has the sort $\left.s\right\}$. Traditionally, we would rather write $a \longrightarrow_{Q} d$ than $a \doteq d \in \longrightarrow_{Q}$.

Proposition 5. \longrightarrow_{Q} is the least set of formal equalities in \mathcal{A} which is context closed and includes Q.

Proof. To prove \longrightarrow_{Q} is context closed, we prefer to show it is compatible with arguments.

Let $c[a] \longrightarrow_{Q} c[d]$ where $a \doteq d \in Q$, let σ be an operation symbol and let a_{i} be some element in \mathcal{A}. Using the context $c^{\prime}=\sigma\left(a_{1}, \ldots, a_{i-1}, c, a_{i+1}, \ldots, a_{n}\right)$ we deduce that $c^{\prime}[a] \longrightarrow_{Q} c^{\prime}[d]$. But as above $c^{\prime}[a]=A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, c[a], a_{i+1}, \ldots, a_{n}\right)$ and $c^{\prime}[d]=A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, c[d], a_{i+1}, \ldots, a_{n}\right)$ therefore

$$
A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, c[a], a_{i+1}, \ldots, a_{n}\right) \longrightarrow_{Q} A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, c[d], a_{i+1}, \ldots, a_{n}\right)
$$

$Q \subseteq \longrightarrow_{Q}$ is proved using the context z.
If R is context closed, then $Q \subseteq R$ implies $\longrightarrow_{Q} \subseteq R$.

1.3. Closure under preorder compatible with operations

If a set of formal equalities in A is closed under $\mathbf{C} \Sigma$ and \mathbf{R} then it is closed under CA ${ }^{\text {E }}$.

Lemma 6. (Compatibility) Let ρ be a preorder in A, i.e. it is reflexive and transitive. If ρ is compatible with arguments then ρ is compatible with the operations.

Proof. Let $\sigma \in \Sigma_{s_{1} \ldots s_{n}, s}$ and $a_{i}, b_{i} \in A_{s_{i}}$ be such that $a_{i} \doteq_{s_{i}} b_{i} \in \rho_{s_{i}}$ for each $i \in[n]$.

We show that $A_{\sigma}\left(a_{1}, \ldots, a_{n}\right) \doteq{ }_{s} A_{\sigma}\left(b_{1}, \ldots, b_{n}\right) \in \rho_{s}$.
If $n=0$ we get $A_{\sigma} \doteq{ }_{s} A_{\sigma} \in \rho_{s}$ from reflexivity.
If $n=1$ we get from $\mathbf{C A} \Sigma$ that $A_{\sigma}\left(a_{1}\right) \doteq{ }_{s} A_{\sigma}\left(b_{1}\right) \in \rho_{s}$.
If $n \geq 2$ as ρ is compatible with arguments we get for each $1 \leq i \leq n$

$$
A_{\sigma}\left(b_{1}, \ldots, b_{i-1}, a_{i}, a_{i+1} \ldots, a_{n}\right) \doteq_{s} A_{\sigma}\left(b_{1}, \ldots, b_{i-1}, b_{i}, a_{i+1} \ldots, a_{n}\right) \in \rho_{s}
$$

From the transitivity of ρ we deduce $A_{\sigma}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \doteq_{s} A_{\sigma}\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \rho_{s}$.

We conclude for a reflexive and transitive set of formal equations in \mathcal{A} that it is context closed if and only if it is closed under CAE if and only if it is closed under $\mathrm{C} \Sigma$.

Proposition 7. $\xrightarrow{*} Q$ is the least preorder which is compatible with the operations and which includes Q.

Proof. As $\xrightarrow{*}$ is reflexive and transitive it suffice to prove the compatibility with arguments, i.e. to show for each $\sigma \in \Sigma_{s_{1} \ldots s_{n}, s^{\prime}}$ that $a \xrightarrow{*} Q$ implies

$$
A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right) \xrightarrow{*} Q A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, d, a_{i+1}, \ldots, a_{n}\right) .
$$

We make an induction on the step number in $a \xrightarrow{*} d$. We suppose $a \longrightarrow_{Q} u$ and $u \xrightarrow{*}{ }_{Q} d$ with a less step number, therefore the inductive hypothesis implies

$$
A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, u, a_{i+1}, \ldots, a_{n}\right) \xrightarrow{*} Q A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, d, a_{i+1}, \ldots, a_{n}\right) .
$$

As \longrightarrow_{Q} is compatible for arguments, from $a \longrightarrow_{Q} u$ we deduce

$$
A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right) \longrightarrow_{Q} A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, u, a_{i+1}, \ldots, a_{n}\right)
$$

By transitivity we get

$$
A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right) \xrightarrow{*} Q A_{\sigma}\left(a_{1}, \ldots, a_{i-1}, d, a_{i+1}, \ldots, a_{n}\right) .
$$

Obviously $Q \subseteq \longrightarrow_{Q} \subseteq{ }^{*}{ }_{Q}$.
Let R be a preorder which is compatible with operations and which includes Q. The compatibility with operations implies $\longrightarrow_{Q} \subseteq R$, therefore ${ }^{*}{ }_{Q} \subseteq R$ as R is reflexive and transitive.

Using the proprieties of the closure operators we deduce that $R \subseteq Q$ implies $\longrightarrow_{R} \subseteq \longrightarrow_{Q}$ and ${ }^{*}{ }_{R} \subseteq \stackrel{*}{\longrightarrow}_{Q}$.

Denote $u \downarrow_{Q} v$ if there exists $a \in \mathcal{A}$ such that $u \xrightarrow{*} Q$ and $v \xrightarrow{*} Q$.

1. Classic Style

Definition 8. A conditional equation is

$$
(\forall X) l \doteq_{s} r \text { if } H
$$

where X is a set of S-sorted variables, l and r are two elements of sort s in $T_{\Sigma}(X)$ and H is a finite set of formal equalities from $T_{\Sigma}(X)$.

A conditional equation in which $H=\emptyset$ becomes an unconditional equation and it is said to be an equation. In this case we write only $(\forall X) l \doteq_{s} r$ instead of $(\forall X) l \doteq_{s}$ r if \emptyset.

2.1. Γ-rewriting

In this section we fix a set Γ of conditional equations, called axiomes and a Σ algebra \mathcal{A}.

We shall use the following deductive rules:
$\operatorname{Rew}_{\Gamma} \quad$ For each $(\forall X) l \doteq_{s} r$ if $H \in \Gamma$ and for each morphism $h: T_{\Sigma}(X) \rightarrow \mathcal{A}$ $\left(\forall u \doteq_{s^{\prime}} v \in H\right)\left(\exists d \in A_{s^{\prime}}\right) h_{s^{\prime}}(u) \doteq_{s^{\prime}} d$ and $h_{s^{\prime}}(v) \doteq_{s^{\prime}} d$ implies $h_{s}(l) \doteq_{s} h_{s}(r)$.

SRew $_{\Gamma} \quad$ For each $(\forall X) l \doteq_{s} r$ if $H \in \Gamma$ and for each morphism $h: T_{\Sigma}(X) \rightarrow \mathcal{A}$ $\left(\forall u \doteq_{s^{\prime}} v \in H\right)\left(\exists d \in A_{s^{\prime}}\right) h_{s^{\prime}}(u) \doteq_{s^{\prime}} d$ and $h_{s^{\prime}}(v) \doteq_{s^{\prime}} d$ implies $c\left[h_{s}(l)\right] \doteq_{s^{\prime}} c\left[h_{s}(r)\right]$ for each context $c \in \mathcal{A}[z]_{s^{\prime}}$.

Note that $\mathbf{S R e w}_{\Gamma}$, rewriting in a subterm, is a stronger deductive rule than $\mathbf{R e w}_{\Gamma}$, rewriting, which is obtained from $\mathbf{S R e w}_{\Gamma}$ for $c=z$.

If a set of formal equations is closed under $\operatorname{Rew}_{\Gamma}$ and $\mathbf{C A} \Sigma$ then it is closed under SRew $_{\Gamma}$.

We define by induction the increasing sequence of sets of formal equations in \mathcal{A}.

$$
Q_{0}=\emptyset,
$$

$Q_{n+1}=\left\{h_{s}(l) \doteq_{s} h_{s}(r):(\forall Y) l \doteq_{s} r\right.$ if $H \in \Gamma, h: T_{\Sigma}(Y) \rightarrow \mathcal{A}$, and $(\forall u \doteq v \in$ $\left.H) h(u) \downarrow_{Q_{n}} h(v)\right\}$.

By definition Q is the union of the increasing sequence Q_{n}. Note that the sequences $\longrightarrow Q_{n}$ and $\xrightarrow{*} Q_{n}$ are increasing.

Remark that $a \longrightarrow_{Q} d$ implies $\exists n$ such that $a \longrightarrow_{Q_{n}} d$. Also $a \xrightarrow{*}{ }_{Q} d$ implies $\exists n$ such that $a \xrightarrow{*} Q_{n} d$.

Proposition 9. $\xrightarrow{*} Q$ is closed under SRew $_{\Gamma}$.
Proof. Let $(\forall Y) l \doteq{ }_{s} r$ if H be in Γ, let $h: T_{\Sigma}(Y) \rightarrow \mathcal{A}$ be a morphism such that $h_{s}(u) \downarrow_{Q} h_{s}(v)$ for each $u \doteq v \in H$ and a context $c \in \mathcal{A}[z]_{s^{\prime}}$. We have to show $c[h(l)] \xrightarrow{*} c[h(r)]$.

As H is finite and the number of steps used in $h_{s}(u) \downarrow_{Q} h_{s}(v)$ where $u \doteq v \in H$ is finite there exists an n such that $h_{s}(u) \downarrow_{Q_{n}} h_{s}(v)$ for each $u \doteq v \in H$. Therefore $h(l) \doteq h(r) \in Q_{n+1}$. As $h(l) \doteq h(r) \in Q$ we deduce $c[h(l)] \xrightarrow{*} Q c[h(r)]$.

Proposition 10. $\xrightarrow{*}_{Q}$ is the least relation closed under $\mathbf{R}, \mathbf{T}, \mathbf{C} \Sigma$ and $\mathbf{R e w}_{\Gamma}$.
Proof. Obviously $\xrightarrow{*}{ }_{Q}$ is closed under \mathbf{R}, \mathbf{T} and $\mathbf{C} \Sigma$ and it is closed under $\mathbf{R e w}_{\Gamma}$ because it is closed under $\mathbf{S R e w}_{\Gamma}$.

Let W be a relation closed under $\mathbf{R}, \mathbf{T}, \mathbf{C} \Sigma$ and $\mathbf{R e w}_{\Gamma}$. We prove by induction on n that $Q_{n} \subseteq W$.
If $n=0$ we have $Q_{0}=\emptyset \subseteq W$.
For $n \geq 1$ let $h(l) \doteq h(r) \in Q_{n}$, where $(\forall Y) l \doteq_{s} r$ if $H \in \Gamma, h: T_{\Sigma}(Y) \rightarrow$ \mathcal{A} and $(\forall u \doteq v \in H) h_{s}(u) \downarrow_{Q_{n-1}} h_{s}(v)$.
By inductive hypothesis $Q_{n-1} \subseteq W$. As W is closed under $C \Sigma$ we deduce that W is context closed, therefore $\longrightarrow_{Q_{n-1}} \subseteq W$. As W is closed under \mathbf{R} and \mathbf{T} we deduce $\xrightarrow{*} Q_{n-1} \subseteq W$.
From $(\forall u \doteq v \in H) h_{s}(u) \downarrow_{Q_{n-1}} h_{s}(v)$ we get $(\forall u \doteq v \in H) h_{s}(u) \downarrow_{W} h_{s}(v)$. As W is closed under $\operatorname{Rew}_{\Gamma}$ we deduce $h(l) \doteq h(r) \in W$, therefore $Q_{n} \subseteq W$.

Hence $Q \subseteq W$ and using proposition 7 we deduce $\stackrel{*}{\longrightarrow} Q \subseteq W$.
In the sequel, when Q is defined as above, traditionally we rather write ${ }^{*}{ }_{\Gamma}$ than $\xrightarrow{*} Q$. Because of its properties the relation $\xrightarrow{*}{ }_{\Gamma}$ is said to be Γ-rewriting or shortly rewriting.

3. Boolean Style

We work with a multi-sorted signature (S, Σ) with a distinguished sort $b \in S$ (b from boolean) and a distinguished constant operation symbol $t \in \Sigma_{\lambda, b}$ (t from true).

Definition 11. A conditional equation is

$$
(\forall X) l \doteq_{s} r \text { if } H
$$

where l and r are two elements of sort s and H is an element of sort b from $T_{\Sigma}(X)$.
A conditional equation in which $H=T_{\Sigma}(X)_{t}$ (the truth of $T_{\Sigma}(X)$) becomes an unconditional one and it is said to be equation. In this case we write only $(\forall X) l \doteq_{s} r$ instead of $(\forall) l \doteq_{s} r$ if $T_{\Sigma}(X)_{t}$.

3.1. Boolean Γ-rewriting

In this section we fix a set Γ of conditional equations, called axiomes and a Σ algebra \mathcal{A}.

We shall use the following deductive rules:
$\operatorname{Sub}_{\Gamma} \quad$ For each $(\forall X) l \doteq_{s} r$ if $H \in \Gamma$ and each morphism $h: T_{\Sigma}(X) \rightarrow \mathcal{A}$, $h_{b}(H) \dot{=}_{b} A_{t}$ implies $h_{s}(l) \doteq_{s} h_{s}(r)$.
$\mathbf{S S u b}_{\Gamma} \quad$ For each $(\forall X) l \doteq{ }_{s} r$ if $H \in \Gamma$ and each morphism $h: T_{\Sigma}(X) \rightarrow \mathcal{A}$ $h_{b}(H) \doteq_{b} A_{t}$ implies $c\left[h_{s}(l)\right] \doteq_{s^{\prime}} c\left[h_{s}(r)\right]$ for each context $c \in \mathcal{A}[z]_{s^{\prime}}$.

Remark that $\mathbf{S S u b}_{\Gamma}$ (substitution in a subterm) is a stronger deductive rule than $\mathbf{S u b}_{\Gamma}($ substitution $)$ which may be got from $\mathbf{S S u b}_{\Gamma}$ for $c=z$.

If a set of formal equations are closed under $\mathbf{S u b}_{\Gamma}$ and $\mathbf{C A} \Sigma$ then it is closed under $\mathbf{S S u b}_{\Gamma}$.

We define by induction the increasing sequence of sets of formal equalities in \mathcal{A}.

$$
B_{0}=\emptyset,
$$

$B_{n+1}=\left\{h_{s}(l) \doteq_{s} h_{s}(r):(\forall Y) l \doteq_{s} r\right.$ if $H \in \Gamma, h: T_{\Sigma}(Y) \rightarrow \mathcal{A}$ and $\left.h_{b}(H) \xrightarrow{*}{ }_{B_{n}} A_{t}\right\}$.

By definition B is the union of the increasing sequence B_{n}. Note that the sequences $\longrightarrow_{B_{n}}$ and $\xrightarrow{*} B_{n}$ are increasing.

Remark that $a \longrightarrow_{B} d$ implies $\exists n$ such that $a \longrightarrow_{B_{n}} d$. Also $a \xrightarrow{*}{ }_{B} d$ implies $\exists n$ such that $a \xrightarrow{*} B_{n} d$.

Fact 12. $\xrightarrow{*}_{B}$ is closed under $\mathbf{S S u b}_{\Gamma}$.
Proof. Let $(\forall Y) l \doteq_{s} r$ if H be in $\Gamma, h: T_{\Sigma}(Y) \rightarrow \mathcal{A}$ a morphism such that $h_{b}(H) \xrightarrow{*} B A_{t}$ and a context $c \in \mathcal{A}[z]_{s^{\prime}}$. We have to show that $c\left[h_{s}(l)\right]{ }^{*}{ }_{B} c\left[h_{s}(r)\right]$.

As the number of steps in $h_{b}(H) \xrightarrow{*} B A_{t}$ is finite there exists an n such that $h_{b}(H) \xrightarrow{*}_{B_{n}} A_{t}$. Therefore $h_{s}(l) \doteq_{s} h_{s}(r) \in B_{n+1}$. As $h_{s}(l) \doteq_{s} h_{s}(r) \in B \subseteq \xrightarrow{*}_{B}$ and $\xrightarrow{*} B$ is context closed we deduce $c\left[h_{s}(l)\right]{ }^{*}{ }_{B} c\left[h_{s}(r)\right]$.

Proposition 13. ${ }^{*} B$ is the least relation closed under Reflexivity, Transitivity, Compatibility with the operations in Σ and $\mathbf{S u b}_{\Gamma}$.

Proof. From proposition 7 and fact 12 we deduce that ${ }^{*}{ }_{B}$ has the above properties.

Let W a relation which is closed under Reflexivity, Transitivity, Compatibility with the operation in Σ and $\mathbf{S u b}_{\Gamma}$.

By induction we prove $(\forall n) B_{n} \subseteq W$. Assume $B_{n} \subseteq W$. As W is closed under \mathbf{R}, \mathbf{T} and $\mathbf{C} \Sigma$ we deduce ${ }^{*} B_{n} \subseteq W$. Because W is closed under $\mathbf{S u b}_{\Gamma}$ we deduce $B_{n+1} \subseteq W$.

Therefore $B \subseteq W$. As W is closed under Reflexivity, Transitivity and Compatibility with the operations in Σ we deduce ${ }^{*}{ }_{B} \subseteq W$.

In the sequel, when B is defined as above, instead of ${ }^{*}{ }_{B}$ we prefer writing ${ }^{*}{ }_{\Gamma}$, relation which because of its properties is said to be, in the sequel, boolean Γ-rewriting or shortly, boolean rewriting.

4. Some algebra

We work with a multi-sorted signature (S, Σ) which we will enrich with a new sort b (from boolean), a constant operation symbol $t: \longrightarrow b$ (t from true), an operation symbol $\wedge: b b \longrightarrow b$ and for each $s \in S$ an operation symbol

$$
=={ }_{s}: s s \longrightarrow b
$$

The new signature will be denoted $\left(S^{b}, \Sigma^{b}\right)$. Obviously $S^{b}=S \cup\{b\}$.
We want that the operation \wedge be associative, commutative, idempotent having t as neutral element. Let E^{b} be the set of the equation

$$
\begin{gathered}
x \wedge(y \wedge z)=(x \wedge y) \wedge z \\
x \wedge y=y \wedge x \\
x \wedge x=x \\
x \wedge t=x \\
t \wedge x=x \\
u=={ }_{s} u=t
\end{gathered}
$$

where the variables x, y, z have sort b and the variable u has sort s.
Remark the inclusion of Σ in $\left(\Sigma^{b}, E^{b}\right)$.

The forgetful functor

$$
U: \operatorname{Alg}\left(\Sigma^{b}, E^{b}\right) \longrightarrow \operatorname{Alg}(\Sigma)
$$

has a left adjoin ${ }_{-}^{b}$. Its definition is given in the sequel.
Each Σ-algebra \mathcal{A} is enriched as a $\left(\Sigma^{b}, E^{b}\right)$-algebra \mathcal{A}^{b} defined by:

1. $\left(A_{b}, A_{\wedge}, A_{t}\right)$ is the free idempotent commutative monoid generated by $\left\{a \doteq_{s}\right.$ $\left.d: s \in S, a, d \in A_{s}, a \neq d\right\}$,
2. operation $=={ }_{s}$ maps unequal elements a, d in A_{s} to $a \doteq{ }_{s} d$, but $a=={ }_{s} a=A_{t}$. Note that $U\left(\mathcal{A}^{b}\right)=\mathcal{A}$.

Proposition 14. For each $\left(\Sigma^{b}, E^{b}\right)$-algebra \mathcal{B} and for each Σ-algebra morphism $h: \mathcal{A} \longrightarrow U(\mathcal{B})$ there existe a unique Σ^{b}-algebra morphism $h^{\#}: \mathcal{A}^{b} \longrightarrow \mathcal{B}$ such that $U\left(h^{\#}\right)=h$.

Proof. By definition $h_{s}^{\#}=h_{s}$ for each sort s. The function $h_{b}^{\#}$ is defined for generators, i.e. for unequal elements a, d in A_{s}, by

$$
h_{b}^{\#}\left(a \doteq_{s} d\right)=B_{==s_{s}}\left(h_{s}(a), h_{s}(d)\right),
$$

being then extended in a natural way to a monoid morphism by

$$
\begin{gathered}
h_{b}^{\#}\left(A_{t}\right)=B_{t} \\
h_{b}^{\#}\left(e_{1} A_{\wedge} e_{2} A_{\wedge} \ldots A_{\wedge} e_{n}\right)=h_{b}^{\#}\left(e_{1}\right) B_{\wedge} h_{b}^{\#}\left(e_{2}\right) B_{\wedge} \ldots B_{\wedge} h_{b}^{\#}\left(e_{n}\right) .
\end{gathered}
$$

For each Σ-algebra morphism $h: \mathcal{A} \longrightarrow \mathcal{B}$ we denote $h^{b}: \mathcal{A}^{b} \longrightarrow \mathcal{B}^{b}$ the $\left(\Sigma^{b}, E^{b}\right)$ algebra morphism got as above. Remark that $U\left(h^{b}\right)=h$. Therefore ${ }_{-}^{b} ; U=1_{\text {Alg }_{\Sigma}}$.

Let X an S-sorted set of variables. Assuming that the set of variables of sort b is empty, X may be seen as an S^{b}-sorted of variables denoted in the sequel X^{b}. That is

$$
\text { if } s \in S \text { then } X_{s}^{b}=X_{s} \text { else } X_{b}^{b}=\emptyset
$$

If B is a S^{b}-sorted set then we may identify the sets

$$
\operatorname{Set}_{S^{b}}\left(X^{b}, B\right) \quad \text { and } \quad \operatorname{Set}_{S}\left(X,\left\{B_{s}\right\}_{s \in S}\right)
$$

as for every S^{b}-sorted function defined on X^{b} its component of sort b must be the inclusion defined on \emptyset.

Proposition 15. Ler $F: \operatorname{Alg}\left(\Sigma^{b}\right) \longrightarrow \operatorname{Alg}(\Sigma)$ be the forgetful functor. Let \mathcal{B} be an Σ^{b}-algebra and let X be an S-sorted set of variables. There exists a bijection between

$$
A l g_{\Sigma^{b}}\left(T_{\Sigma^{b}}\left(X^{b}\right), \mathcal{B}\right) \quad \text { and } \quad \operatorname{Alg}_{\Sigma}\left(T_{\Sigma}(X), F(\mathcal{B})\right)
$$

which forgets the component of sort b of the morphism.

Proof. The set $A l g_{\Sigma^{b}}\left(T_{\Sigma^{b}}\left(X^{b}\right), \mathcal{B}\right)$ is in a natural bijection with the set $\operatorname{Set}_{S^{b}}\left(X^{b}, B\right)$ and the set $\operatorname{Alg}_{\Sigma}\left(T_{\Sigma}(X), F(\mathcal{B})\right)$ is in a natural bijection with $\left.\operatorname{Set}_{S}\left(X,\left\{B_{s}\right\}_{s \in S}\right)\right)$. We have seen above that the two sets are as identic.

If we forget the elements of sort b and the operations those rank involves this sort of a Σ^{b}-algebra freely generated by X^{b} we get an Σ-algebra freely generated by X, i.e. $F\left(T_{\Sigma^{b}}\left(X^{b}\right)\right)=T_{\Sigma}(X)$.

5. Some semantics

In an Σ^{b}-algebra \mathcal{B} let

$$
G=\left\{l_{1} \dot{\doteq}_{s 1} r_{1}, l_{2} \dot{=}_{s 2} r_{2}, \ldots, l_{n} \dot{=}_{s n} r_{n}\right\}
$$

be a finite set of formal equalities between elements which have not sort b. We define an element of sort b

$$
G^{b}=l_{1}==_{s 1} r_{1} B_{\wedge} l_{2}==_{s 2} r_{2} B_{\wedge} \ldots B_{\wedge} l_{n}==_{s n} r_{n}
$$

If \mathcal{B} is not a E^{b}-algebra, then G^{b} may not be unique, which case we make a nondeterministic choice.

To pass from classic style to the boolean one we replace each finite set of formal equalities G from \mathcal{A} with G^{b} an element of sort b in \mathcal{A}^{b}.

We mention the following specific properties of the algebra \mathcal{A}^{b}

1. $x A_{\wedge} y=A_{t}$ implies $x=y=A_{t}$, for each $x, y \in A_{b}$,
2. $a=={ }_{s} d=A_{t}$ implies $a=d$ for each $s \in S$ and each $a, d \in A_{s}$.

Lemma 16. If G is a finite set of formal equalities from $T_{\Sigma}(X)$ and $h: T_{\Sigma^{b}}\left(X^{b}\right) \longrightarrow$ \mathcal{A}^{b} is an Σ^{b}-morphism then

$$
h_{b}\left(G^{b}\right)=A_{t} \quad \text { if and only if } \quad h_{s}(u)=h_{s}(v) \text { for each } u=_{s} v \in G
$$

Proof. We use the above notation and we remark the following equivalent facts.

1. $h_{b}\left(G^{b}\right)=A_{t}$,
2. $h_{b}\left(l_{1}==_{s 1} r_{1} \wedge l_{2}==_{s 2} r_{2} \wedge \ldots \wedge l_{n}==_{s n} r_{n}\right)=A_{t}$,
3. $h_{s 1}\left(l_{1}\right) A_{=={ }_{s 1}} h_{s 1}\left(r_{1}\right) A_{\wedge} \ldots A_{\wedge} h_{s n}\left(l_{n}\right) A_{==s n} h_{s n}\left(r_{n}\right)=A_{t}$,
4. $h_{s i}\left(l_{i}\right) A_{={ }_{s i}} h_{s i}\left(r_{i}\right)=A_{t}$ for each $1 \leq i \leq n$,
5. $h_{s i}\left(l_{i}\right)=h_{s i}\left(r_{i}\right)$ for each $1 \leq i \leq n$.

Each classic Σ-conditional equation

$$
\gamma=(\forall X) l \doteq_{s} r \text { if } G
$$

may be changed in an Σ^{b}-conditional equation with a condition of sort b

$$
\gamma^{b}=\left(\forall X^{b}\right) l \doteq_{s} r \text { if } G^{b}
$$

Let Γ be a set of classic Σ-conditional equations. We denote $\Gamma^{b}=\left\{\gamma^{b}: \gamma \in \Gamma\right\}$ a set of the Σ^{b}-axiomes.

Proposition 17. If \mathcal{A} is an Σ-algebra and γ an Σ-conditional equation then

$$
\mathcal{A}^{b} \models \gamma^{b} \text { if and only if } \mathcal{A} \models \gamma .
$$

Proof. Using proposition 15 we identify an Σ-morphism h from $T_{\Sigma}(X)$ to \mathcal{A} and an Σ^{b}-morphism from $T_{\Sigma^{b}}\left(X^{b}\right)$ to \mathcal{A}^{b}. For each such morphism h, from lemma we get the following equivalent facts:

1. if $h_{b}\left(l_{1}==_{s 1} r_{1} \wedge l_{2}=={ }_{s 2} r_{2} \wedge \ldots \wedge l_{n}==_{s n} r_{n}\right)=A_{t}$ then $h_{s}(l)=h_{s}(r)$,
2. if $h_{s i}\left(l_{i}\right)=h_{s i}\left(r_{i}\right)$ for each $1 \leq i \leq n$ then $h_{s}(l)=h_{s}(r)$, and the conclusion follows easily.

Corollary 18. If \mathcal{A} is an Σ-algebra and Γ a set of Σ-conditional equations then

$$
\mathcal{A}=_{\Sigma} \Gamma \quad \text { if and only if } \quad \mathcal{A}^{b} \models_{\Sigma^{b}} \Gamma^{b} .
$$

6. Boolean Versus Classic

We show that the classic Γ-rewritings in the Σ-algebra \mathcal{A} have the same power as the boolean Γ^{b}-rewritings in the Σ^{b}-algebra \mathcal{A}^{b}.

Theorem 19. 1. For each $s \in S$, for each $u, v \in A_{s}$

$$
u \stackrel{*}{\Longrightarrow}_{\Gamma} v \text { in } \mathcal{A} \text { if and only if } u \stackrel{*}{*}_{\Gamma^{b}} v \text { in } \mathcal{A}^{b} .
$$

2. For $G=\left\{l_{1} \doteq_{s 1} r_{1}, l_{2} \doteq_{s 2} r_{2}, \ldots, l_{n} \doteq_{s n} r_{n}\right\}$ a set of formal equations with elements of sorts notequal to b

$$
(\forall i) l_{i} \downarrow_{\Gamma} r_{i} \text { in } \mathcal{A} \text { if and only if } G^{b} \stackrel{*}{\Longrightarrow}_{\Gamma^{b}} A_{t} \text { in } \mathcal{A}^{b} .
$$

Proof. 1. Assume $u \xlongequal{*}{ }_{\Gamma} v$ in \mathcal{A}. Using the notation from the section "Classic Style" this means $u \xrightarrow{*} Q$. As Q is the union of the sequence $\left\{Q_{n}\right\}$ there exists a natural number n such that $u \xrightarrow{*} Q_{n} v$.

By induction by n. If $n=0$ then $u=v$ therefore $u{ }^{*} \Gamma^{b} v$ in \mathcal{A}^{b}.

Assume $u \xrightarrow{*} Q_{n+1} v$. We do another induction on the number of rewriting steps. In case $0 u=v$.

Suppose $u \xrightarrow{*} Q_{n+1} w$ and $w Q_{n+1} v$. Moreover by the inductive hypothesis $u \xlongequal{*} \Gamma^{b} w$ in \mathcal{A}^{b}.
From $w \longrightarrow Q_{n+1} v$ we deduce $w=c[a]$ and $v=c[d]$ where $a \doteq d \in Q_{n+1}$. Therefore there exist $(\forall Y) l \doteq{ }_{s} r$ if $H \in \Gamma$ and the morphism $h: T_{\Sigma}(Y) \rightarrow \mathcal{A}$ such that $(\forall p \doteq$ $q \in H) h_{s}(p) \downarrow_{Q_{n}} h_{s}(q), a=h_{s}(l)$ and $d=h_{s}(r)$.

Therefore for each $p \doteq q \in H$ there exists $g_{p g}$ such that $h_{s}(p) \xrightarrow{*} Q_{n} g_{p g}$ and $h_{s}(q) \xrightarrow{*} Q_{n} g_{p g}$. From the inductive hypothesis $h_{s}(p) \stackrel{*}{\longrightarrow}_{\Gamma^{b}} g_{p g}$ and $h_{s}(q) \xrightarrow{*} \Gamma^{b} g_{p g}$. We deduce $h_{s}(p)=={ }_{s} h_{s}(q) \stackrel{*}{\Gamma^{b}} g_{p g}=={ }_{s} g_{p g}=A_{t}$.
From proposition 15 morphism h may be seen as a Σ^{b}-algebra morphism from $T_{\Sigma^{b}}\left(Y^{b}\right)$ to \mathcal{A}^{b}. Therefore $h_{b}\left(H^{b}\right) \xrightarrow{*} \Gamma^{b} A_{t}$.

We deduce $c\left[h_{s}(l)\right] \Longrightarrow{ }_{\Gamma^{b}} c\left[h_{s}(r)\right]$, i.e. $w \Longrightarrow_{\Gamma^{b}} v$, therefore $u{ }^{*} \Gamma^{b} v$.
For the converse we assume $u \xlongequal{*} \Gamma^{b} v$ in \mathcal{A}^{b}. Using the notation in the section "Boolean Style" this means $u \xrightarrow{*} B$. As B is the union of the sequence $\left\{B_{n}\right\}$ there exists a natural number n such that $u \xrightarrow{*} B_{n} v$.

By induction on n. If $n=0$ then $u=v$ therefore $u{ }^{*} v$ in \mathcal{A}.
Assume $u \xrightarrow{*}_{B_{n+1}} v$. We do another induction on the number of rewriting steps. For 0 steps $u=v$.

Suppose $u \xrightarrow{*}_{B_{n+1}} w$ and $w \longrightarrow_{B_{n+1}} v$. Moreover by the inductive hypothesis $u{ }^{*}{ }_{\Gamma} w$ in \mathcal{A}. From $w \longrightarrow_{B_{n+1}} v$ we deduce $w=c[a]$ and $v=c[d]$ where $a \doteq d \in$ B_{n+1}. Therefore there exist

$$
(\forall Y) l \doteq_{s} r \text { if }\left\{l_{1} \doteq_{s 1} r_{1}, l_{2} \doteq_{s 2} r_{2}, \ldots, l_{k} \dot{=}_{s k} r_{k}\right\} \in \Gamma
$$

and the Σ^{b}-morphism $h: T_{\Sigma^{b}}\left(Y^{b}\right) \rightarrow \mathcal{A}^{b}$, such that

$$
h_{b}\left(l_{1}==_{s 1} r_{1} \wedge l_{2}==_{s 2} r_{2} \wedge \ldots \wedge l_{k}==_{s k} r_{k}\right) \xrightarrow{*} B_{n} A_{t},
$$

$a=h_{s}(l)$ and $d=h_{s}(r)$. We deduce

$$
h_{s 1}\left(l_{1}\right)==_{s 1} h_{s 1}\left(r_{1}\right) \wedge h_{s 2}\left(l_{2}\right)==_{s 2} h_{s 2}\left(r_{2}\right) \wedge \ldots \wedge h_{s k}\left(l_{k}\right)==_{s k} h_{s k}\left(r_{k}\right) \xrightarrow{*} B_{n} A_{t} .
$$

As the Γ^{b}-rewriting can not be made at top and the algebra \mathcal{A}^{b} has specific properties $h_{s i}\left(l_{i}\right)==_{s i} h_{s i}\left(r_{i}\right) \xrightarrow{*} B_{n} A_{t}$ for each $1 \leq i \leq k$. As the Γ^{b}-rewriting can not be made at top in $h_{s i}\left(l_{i}\right)=={ }_{s i} h_{s i}\left(r_{i}\right)$ and the algebra \mathcal{A}^{b} has specific properties for each $1 \leq i \leq k$ there exists $a_{i} \in A_{s i}$ such that

$$
h_{s i}\left(l_{i}\right) \xrightarrow{*}_{B_{n}} a_{i} \text { and } h_{s i}\left(r_{i}\right) \xrightarrow{*} B_{n} a_{i} .
$$

By the inductive hypothesis $h_{s i}\left(l_{i}\right) \xrightarrow{*}{ }_{\Gamma} a_{i}$ and $h_{s i}\left(r_{i}\right){ }^{*}{ }_{\Gamma} a_{i}$, therefore $h_{s i}\left(l_{i}\right) \downarrow_{\Gamma}$ $h_{s i}\left(r_{i}\right)$ for each $1 \leq i \leq k$, then $w \Longrightarrow_{\Gamma} v$, hence $u{ }^{*}{ }_{\Gamma} v$.
2. Assume $l_{i} \downarrow_{\Gamma} r_{i}$ in \mathcal{A} for each i. There exists u_{i} such that $l_{i}{ }^{*}{ }_{\Gamma} u_{i}$ and $r_{i}{ }^{*}{ }_{\Gamma}$ u_{i}. Using the first item of the theorem we get $l_{i}{ }^{*} \Gamma^{b} u_{i}$ and $r_{i} \xrightarrow{*} \Gamma^{b} u_{i}$. We deduce
$l_{1}=={ }_{s 1} r_{1} \wedge l_{2}==_{s 2} r_{2} \wedge \ldots \wedge l_{n}==_{s n} r_{n} \stackrel{*}{\Longrightarrow}_{\Gamma^{b}} u_{1}==_{s 1} u_{1} \wedge \ldots \wedge u_{n}==_{s n} u_{n}=$ $=A_{t} \wedge \ldots \wedge A_{t}=A_{t}$.

For the converse, suppose that

$$
l_{1}==_{s 1} r_{1} \wedge l_{2}==_{s 2} r_{2} \wedge \ldots \wedge l_{n}==_{s n} r_{n} \stackrel{*}{\Longrightarrow}_{\Gamma^{b}} A_{t} .
$$

As the Γ^{b}-rewriting can not be made at top and the algebra \mathcal{A}^{b} has specific properties we deduce for each $1 \leq i \leq n$ that $l_{i}==_{s i} r_{i} \xrightarrow{*} \Gamma^{b} A_{t}$.

As the Γ^{b}-rewriting can not be made at top in $l_{i}==_{s i} r_{i}$ and the algebra \mathcal{A}^{b} has specific properties we deduce that for each $1 \leq i \leq n$ there exists u_{i} such that $l_{i} \xlongequal{*} \Gamma^{b} u_{i}$ and $r_{i} \xlongequal{*} \Gamma^{b} u_{i}$. Using the first item of the theorem we get $l_{i} \downarrow_{\Gamma} r_{i}$.

Corollary 20. For each $s \in S$ and for each $u, v \in A_{s}$

$$
u \Longrightarrow_{\Gamma} v \text { în } \mathcal{A} \text { if and only if } u \Longrightarrow_{\Gamma^{b}} v \text { in } \mathcal{A}^{b} .
$$

Proof. For each $(\forall Y) l \doteq_{s} r$ if $H \in \Gamma$ and for each Σ^{b}-morphism $h: T_{\Sigma^{b}}\left(Y^{b}\right) \rightarrow \mathcal{A}^{b}$, using the second conclusion of the theorem 19 applied to the set $h(H)$ and the equality $h(H)^{b}=h_{b}\left(H^{b}\right)$ we deduce

$$
(\forall u=v \in H) h(u) \downarrow_{\Gamma} h(v) \text { in } \mathcal{A} \text { if and only if } h_{b}\left(H^{b}\right) \stackrel{*}{\Longrightarrow}_{\Gamma^{b}} A_{t} \text { in } \mathcal{A}^{b}
$$

The conclusion follows easily applying one step rewriting definitions.
The above propositions prove that the classic rewriting in an Σ-algebra \mathcal{A} is obtained by boolean rewriting in the Σ^{b}-algebra \mathcal{A}^{b}.

17. Conclusion

As the classic rewriting is equivalent to boolean rewriting in a specific algebra we get the conclusion that the boolean rewriting is more general than the classic rewriting.

References

[1] BAADER F., NIPKOV T., Term Rewriting and All That, Cambridge University Press 1998.
[2] CĂZĂNESCU V. E., Curs de bazele informaticii, volum II, Tipografia Universităţii Bucureşti, 1983.
[3] CĂZĂNESCU V. E., Local equational logic, in Fundamentals of Computation Theory (Ed. Z. Ésik), Lecture Notes in Computer Science 710(1993), pp. 162-170.
[4] CĂZĂNESCU V. E., Local equational logic II, in Developments in Language Theory (Eds. G. Rozenberg and A. Salomaa), World Scientific, 1994, pp. 210-221.
[5] CĂZĂNESCU V. E., KUDLEK M., Local Rewriting, Romanian Journal of Information Science and Technology, 6,1-2(2003), pp. 105-120.
[6] DIACONESCU R., The Logic of Horn Clauses is equational, University of Oxford, Programming Research Group Technical Report PRG-TR-3-93, 1990.
[7] GOGUEN J., Theorem Proving and Algebra, unpublished book.
[8] OHLEBUSCH E., Advanced Topics in Term Rewriting, Springer, 2001.
[9] ROŞU G., Axiomatizability in inclusive equational logics, Math. Struct. in Comp. Science, 2002.
[10] TERESE, Term Rewriting System, Cambridge University Press 2003.

[^0]: ${ }^{1}$ Partially supported by Softwin

