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Abstract. This paper includes two main ideas. The first one, rewriting in

an algebra, was introduced in [5]. The second one, boolean rewriting, can be

found in many papers but we were never able to find a clear comparison with

the classic one. We prefer rewriting in an algebra to term rewriting. This is our

way to give a unique theory of rewriting. If the algebra is free, then we get the

term rewriting. If the algebra is a certain quotient of a free algebra then we get

rewriting modulo equations. Rewriting is said to be boolean when the condition

of each conditional equation is of boolean sort(in the free algebra it is a boolean

term). We prove the classic rewriting is equivalent to boolean rewriting in a

specific algebra, therefore, boolean rewriting is more general than the classic

one.

1. Preliminaries

Let Σ be an algebraic S–sorted signature. Let X be an S–sorted set of variables.
Let TΣ(X) be the Σ–algebra freely generated by X.

Let A = ({As}s∈S , {Aσ}σ∈Σ) be a Σ–algebra and let z be a variable of sort s,
z /∈ As. Let A[z] be a shorter notation for TΣ(A∪{z}) the Σ–algebra freely generated
by A∪{z}. An element c fromA[z] is said to be context if the number of the occurences
of z in c is 1. If c = σ(c1, c2, . . . , cn) is a context then there exists 1 ≤ i ≤ n such that
ci is a context and cj ∈ TΣ(A) for each j 6= i.

For d ∈ As, let z ← d : A[z] −→ A be the unique morphism of Σ–algebras such
that (z ← d)(z) = d and (z ← d)(a) = a for each a ∈ A. For each t in A[z] and
a ∈ As, we prefer to write t[a] instead of (z ← a)(t).

1Partially supported by Softwin
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1.1. Deduction Rules

We list some families of deduction rules in the set of the formal equalities in a fixed
Σ-algebra A. There is no essential difference between a set of formal equalities in A
and a relation in A. These rules are called Reflexivity, Transitivity, Compatibility
with the operations in Σ and Compatibility with each Argument of the operations in
Σ:

R a
.=s a for each s ∈ S and a ∈ As,

T a
.=s b and b

.=s c imply a
.=s c for each s ∈ S and a, b, c ∈ As,

CΣ ai
.=si

ci for all i ∈ [n] imply Aσ(a1, a2, . . . , an) .=s Aσ(c1, c2, . . . , cn)
for each σ ∈ Σs1s2...sn,s

CAΣ a
.=si

d implies
Aσ(a1, . . . , ai−1, a, ai+1, . . . , an) .=s Aσ(a1, . . . , ai−1, d, ai+1, . . . , an)
for each σ ∈ Σs1...sn,s, each i ∈ [n], where aj ∈ Asj

for each j ∈ {1, . . . , i− 1, i + 1, . . . , n} and a, d ∈ Asi
.

Definition 1. A set of the formal egalities in the algebra A is said to be reflexive,
transitive, compatible with operations or compatible with arguments if it is closed
under R,T, CΣ or CAΣ, respectively. 2

1.2. Context Closure

Definition 2. A set of the formal egalities Q in the algebra A is said to be context
closed if for each context c and for each pair of elements a, d in A, a

.=s d ∈ Q implies
c[a] .= c[d] ∈ Q. 2

Proposition 3. A relation is context closed if and only if it is compatible with
arguments.

Proof. Suppose Q is context closed. To prove the compatibility with arguments
we apply the hypothesis for the context σ(a1, . . . , ai−1, z, ai+1, . . . , an).

Conversely, the result is proved by structural induction in A[z] for contexts.
For c = z. For each a

.=s d ∈ Q, c[a] = a, c[d] = d, therefore c[a] .=s c[d] ∈ Q.
For a context c = σ(a1, . . . , ai−1, c

′, ai+1, . . . , an) where c′ ∈ A[z] is a context and
ai ∈ TΣ(A) for each i

c[a] = (z ← a)(c) = Aσ(a1[a], . . . , ai−1[a], c′[a], ai+1[a], . . . , an[a])

and c[d] = Aσ(a1[d], . . . , ai−1[d], c′[d], ai+1[d], . . . , an[d]). Moreover ai[a] = ai[d] for
each i.
From inductive hypothesis c′[a] .= c′[d] ∈ Q and using the compatibility with argu-
ments we get c[a] .= c[d] ∈ Q. 2

Definition 4. For each relation Q on A we denote −→Q = {c[a] .= c[d] : a
.=s

d ∈ Qs, c ∈ A[z] is a context where the variable z has the sort s}. Traditionally, we
would rather write a −→Q d than a

.= d ∈−→Q . 2
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Proposition 5. −→Q is the least set of formal equalities in A which is context
closed and includes Q.

Proof. To prove −→Q is context closed, we prefer to show it is compatible with
arguments.

Let c[a] −→Q c[d] where a
.= d ∈ Q, let σ be an operation symbol and let

ai be some element in A. Using the context c′ = σ(a1, . . . , ai−1, c, ai+1, . . . , an) we
deduce that c′[a] −→Q c′[d]. But as above c′[a] = Aσ(a1, . . . , ai−1, c[a], ai+1, . . . , an)
and c′[d] = Aσ(a1, . . . , ai−1, c[d], ai+1, . . . , an) therefore

Aσ(a1, . . . , ai−1, c[a], ai+1, . . . , an) −→Q Aσ(a1, . . . , ai−1, c[d], ai+1, . . . , an).

Q ⊆−→Q is proved using the context z.
If R is context closed, then Q ⊆ R implies −→Q ⊆ R. 2

1.3. Closure under preorder compatible with operations

If a set of formal equalities in A is closed under CΣ and R then it is closed under
CAΣ.

Lemma 6. (Compatibility) Let ρ be a preorder in A, i.e. it is reflexive and
transitive. If ρ is compatible with arguments then ρ is compatible with the operations.

Proof. Let σ ∈ Σs1...sn,s and ai, bi ∈ Asi be such that ai
.=si bi ∈ ρsi for each

i ∈ [n].
We show that Aσ(a1, . . . , an) .=s Aσ(b1, . . . , bn) ∈ ρs.
If n = 0 we get Aσ

.=s Aσ ∈ ρs from reflexivity.
If n = 1 we get from CAΣ that Aσ(a1)

.=s Aσ(b1) ∈ ρs.
If n ≥ 2 as ρ is compatible with arguments we get for each 1 ≤ i ≤ n

Aσ(b1, . . . , bi−1, ai, ai+1 . . . , an) .=s Aσ(b1, . . . , bi−1, bi, ai+1 . . . , an) ∈ ρs

From the transitivity of ρ we deduce Aσ(a1, a2, . . . , an) .=s Aσ(b1, b2, . . . , bn) ∈ ρs. 2

We conclude for a reflexive and transitive set of formal equations in A that it is
context closed if and only if it is closed under CAΣ if and only if it is closed under
CΣ.

Proposition 7. ∗−→Q is the least preorder which is compatible with the opera-
tions and which includes Q.

Proof. As ∗−→Q is reflexive and transitive it suffice to prove the compatibility with
arguments, i.e. to show for each σ ∈ Σs1...sn,s′ that a

∗−→Q d implies

Aσ(a1, . . . , ai−1, a, ai+1, . . . , an) ∗−→Q Aσ(a1, . . . , ai−1, d, ai+1, . . . , an).

We make an induction on the step number in a
∗−→Q d. We suppose a −→Q u

and u
∗−→Q d with a less step number, therefore the inductive hypothesis implies

Aσ(a1, . . . , ai−1, u, ai+1, . . . , an) ∗−→Q Aσ(a1, . . . , ai−1, d, ai+1, . . . , an).
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As −→Q is compatible for arguments, from a −→Q u we deduce

Aσ(a1, . . . , ai−1, a, ai+1, . . . , an) −→Q Aσ(a1, . . . , ai−1, u, ai+1, . . . , an).

By transitivity we get

Aσ(a1, . . . , ai−1, a, ai+1, . . . , an) ∗−→Q Aσ(a1, . . . , ai−1, d, ai+1, . . . , an).

Obviously Q ⊆−→Q⊆ ∗−→Q .
Let R be a preorder which is compatible with operations and which includes Q.

The compatibility with operations implies −→Q ⊆ R, therefore ∗−→Q ⊆ R as R is
reflexive and transitive. 2

Using the proprieties of the closure operators we deduce that R ⊆ Q implies
−→R⊆−→Q and ∗−→R⊆ ∗−→Q.

Denote u ↓Q v if there exists a ∈ A such that u
∗−→Q a and v

∗−→Q a.

1. Classic Style

Definition 8. A conditional equation is

(∀X)l .=s r if H

where X is a set of S-sorted variables, l and r are two elements of sort s in TΣ(X)
and H is a finite set of formal equalities from TΣ(X). 2

A conditional equation in which H = ∅ becomes an unconditional equation and it
is said to be an equation. In this case we write only (∀X)l .=s r instead of (∀X)l .=s

r if ∅.

2.1. Γ–rewriting

In this section we fix a set Γ of conditional equations, called axiomes and a Σ-
algebra A.

We shall use the following deductive rules:

RewΓ For each (∀X) l
.=s r if H ∈ Γ and for each morphism h : TΣ(X) → A

(∀u .=s′ v ∈ H)(∃d ∈ As′)hs′(u) .=s′ d and hs′(v) .=s′ d implies
hs(l)

.=s hs(r).

SRewΓ For each (∀X) l
.=s r if H ∈ Γ and for each morphism h : TΣ(X) → A

(∀u .=s′ v ∈ H)(∃d ∈ As′)hs′(u) .=s′ d and hs′(v) .=s′ d implies
c[hs(l)]

.=s′ c[hs(r)] for each context c ∈ A[z]s′ .

Note that SRewΓ, rewriting in a subterm, is a stronger deductive rule than RewΓ,
rewriting, which is obtained from SRewΓ for c = z.
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If a set of formal equations is closed under RewΓ and CAΣ then it is closed under
SRewΓ.

We define by induction the increasing sequence of sets of formal equations in A.

Q0 = ∅,

Qn+1 = {hs(l)
.=s hs(r) : (∀Y )l .=s r if H ∈ Γ, h : TΣ(Y ) → A, and (∀u .= v ∈

H)h(u) ↓Qn h(v)}.
By definition Q is the union of the increasing sequence Qn. Note that the sequences
−→Qn

and ∗−→Qn
are increasing.

Remark that a −→Q d implies ∃n such that a −→Qn d. Also a
∗−→Q d implies ∃n

such that a
∗−→Qn

d.

Proposition 9. ∗−→Q is closed under SRewΓ.

Proof. Let (∀Y )l .=s r if H be in Γ, let h : TΣ(Y ) → A be a morphism such
that hs(u) ↓Q hs(v) for each u

.= v ∈ H and a context c ∈ A[z]s′ . We have to show
c[h(l)] ∗−→Q c[h(r)].

As H is finite and the number of steps used in hs(u) ↓Q hs(v) where u
.= v ∈ H

is finite there exists an n such that hs(u) ↓Qn hs(v) for each u
.= v ∈ H. Therefore

h(l) .= h(r) ∈ Qn+1. As h(l) .= h(r) ∈ Q we deduce c[h(l)] ∗−→Q c[h(r)]. 2

Proposition 10. ∗−→Q is the least relation closed under R, T, CΣ and RewΓ.

Proof. Obviously ∗−→Q is closed under R, T and CΣ and it is closed under RewΓ

because it is closed under SRewΓ.
Let W be a relation closed under R, T, CΣ and RewΓ. We prove by induction

on n that Qn ⊆ W.
If n = 0 we have Q0 = ∅ ⊆ W.
For n ≥ 1 let h(l) .= h(r) ∈ Qn, where (∀Y )l .=s r if H ∈ Γ, h : TΣ(Y ) →
A and (∀u .= v ∈ H)hs(u) ↓Qn−1 hs(v).
By inductive hypothesis Qn−1 ⊆ W . As W is closed under CΣ we deduce that W is
context closed, therefore −→Qn−1 ⊆ W . As W is closed under R and T we deduce
∗−→Qn−1⊆ W .

From (∀u .= v ∈ H)hs(u) ↓Qn−1 hs(v) we get (∀u .= v ∈ H)hs(u) ↓W hs(v). As W is
closed under RewΓ we deduce h(l) .= h(r) ∈ W , therefore Qn ⊆ W.

Hence Q ⊆ W and using proposition 7 we deduce ∗−→Q⊆ W. 2

In the sequel, when Q is defined as above, traditionally we rather write ∗=⇒Γ than
∗−→Q. Because of its properties the relation ∗=⇒Γ is said to be Γ–rewriting or shortly

rewriting.
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3. Boolean Style

We work with a multi-sorted signature (S, Σ) with a distinguished sort b ∈ S (b
from boolean) and a distinguished constant operation symbol t ∈ Σλ,b (t from true).

Definition 11. A conditional equation is

(∀X)l .=s r if H

where l and r are two elements of sort s and H is an element of sort b from TΣ(X). 2

A conditional equation in which H = TΣ(X)t (the truth of TΣ(X)) becomes an
unconditional one and it is said to be equation. In this case we write only (∀X)l .=s r
instead of (∀)l .=s r if TΣ(X)t.

3.1. Boolean Γ–rewriting

In this section we fix a set Γ of conditional equations, called axiomes and a Σ-
algebra A.

We shall use the following deductive rules:

SubΓ For each (∀X) l
.=s r if H ∈ Γ and each morphism h : TΣ(X) → A,

hb(H) .=b At implies hs(l)
.=s hs(r).

SSubΓ For each (∀X) l
.=s r if H ∈ Γ and each morphism h : TΣ(X) → A

hb(H) .=b At implies c[hs(l)]
.=s′ c[hs(r)] for each context c ∈ A[z]s′ .

Remark that SSubΓ(substitution in a subterm) is a stronger deductive rule than
SubΓ(substitution) which may be got from SSubΓ for c = z.

If a set of formal equations are closed under SubΓ and CAΣ then it is closed
under SSubΓ.

We define by induction the increasing sequence of sets of formal equalities in A.

B0 = ∅,
Bn+1 = {hs(l)

.=s hs(r) : (∀Y )l .=s r if H ∈ Γ, h : TΣ(Y ) → A and
hb(H) ∗−→Bn At}.
By definition B is the union of the increasing sequence Bn. Note that the sequences
−→Bn and ∗−→Bn are increasing.

Remark that a −→B d implies ∃n such that a −→Bn d. Also a
∗−→B d implies ∃n

such that a
∗−→Bn d.

Fact 12. ∗−→B is closed under SSubΓ.

Proof. Let (∀Y )l .=s r if H be in Γ, h : TΣ(Y ) → A a morphism such that
hb(H) ∗−→B At and a context c ∈ A[z]s′ . We have to show that c[hs(l)]

∗−→B c[hs(r)].
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As the number of steps in hb(H) ∗−→B At is finite there exists an n such that
hb(H) ∗−→Bn At. Therefore hs(l)

.=s hs(r) ∈ Bn+1. As hs(l)
.=s hs(r) ∈ B ⊆ ∗−→B

and ∗−→B is context closed we deduce c[hs(l)]
∗−→B c[hs(r)]. 2

Proposition 13. ∗−→B is the least relation closed under Reflexivity, Transitivity,
Compatibility with the operations in Σ and SubΓ.

Proof. From proposition 7 and fact 12 we deduce that ∗−→B has the above prop-
erties.

Let W a relation which is closed under Reflexivity, Transitivity, Compatibility
with the operation in Σ and SubΓ.

By induction we prove (∀n)Bn ⊆ W . Assume Bn ⊆ W . As W is closed under
R, T and CΣ we deduce ∗−→Bn⊆ W . Because W is closed under SubΓ we deduce
Bn+1 ⊆ W .

Therefore B ⊆ W. As W is closed under Reflexivity, Transitivity and Compatibility
with the operations in Σ we deduce ∗−→B⊆ W. 2

In the sequel, when B is defined as above, instead of ∗−→B we prefer writing
∗=⇒Γ, relation which because of its properties is said to be, in the sequel, boolean

Γ–rewriting or shortly, boolean rewriting.

4. Some algebra

We work with a multi-sorted signature (S, Σ) which we will enrich with a new sort
b (from boolean), a constant operation symbol t :−→ b (t from true), an operation
symbol ∧ : bb −→ b and for each s ∈ S an operation symbol

==s: ss −→ b.

The new signature will be denoted (Sb, Σb). Obviously Sb = S ∪ {b}.
We want that the operation ∧ be associative, commutative, idempotent having t

as neutral element. Let Eb be the set of the equation

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∧ y = y ∧ x

x ∧ x = x

x ∧ t = x

t ∧ x = x

u ==s u = t

where the variables x, y, z have sort b and the variable u has sort s.

Remark the inclusion of Σ in (Σb, Eb).



388 V. Căzănescu

The forgetful functor

U : Alg(Σb, Eb) −→ Alg(Σ)

has a left adjoin b. Its definition is given in the sequel.

Each Σ-algebra A is enriched as a (Σb, Eb)-algebra Ab defined by:

1. (Ab, A∧, At) is the free idempotent commutative monoid generated by {a .=s

d : s ∈ S, a, d ∈ As, a 6= d},
2. operation ==s maps unequal elements a, d in As to a

.=s d, but a ==s a = At.

Note that U(Ab) = A.

Proposition 14. For each (Σb, Eb)-algebra B and for each Σ-algebra morphism
h : A −→ U(B) there existe a unique Σb-algebra morphism h# : Ab −→ B such that
U(h#) = h.

Proof. By definition h#
s = hs for each sort s. The function h#

b is defined for
generators, i.e. for unequal elements a, d in As, by

h#
b (a .=s d) = B==s(hs(a), hs(d)),

being then extended in a natural way to a monoid morphism by

h#
b (At) = Bt

h#
b (e1 A∧ e2 A∧ . . . A∧ en) = h#

b (e1) B∧ h#
b (e2) B∧ . . . B∧ h#

b (en). 2

For each Σ-algebra morphism h : A −→ B we denote hb : Ab −→ Bb the (Σb, Eb)-
algebra morphism got as above. Remark that U(hb) = h. Therefore b;U = 1AlgΣ .

Let X an S-sorted set of variables. Assuming that the set of variables of sort b is
empty, X may be seen as an Sb-sorted of variables denoted in the sequel Xb. That is

if s ∈ S then Xb
s = Xs else Xb

b = ∅.
If B is a Sb-sorted set then we may identify the sets

SetSb(Xb, B) and SetS(X, {Bs}s∈S).

as for every Sb-sorted function defined on Xb its component of sort b must be the
inclusion defined on ∅.

Proposition 15. Ler F : Alg(Σb) −→ Alg(Σ) be the forgetful functor. Let B
be an Σb-algebra and let X be an S-sorted set of variables. There exists a bijection
between

AlgΣb(TΣb(Xb),B) and AlgΣ(TΣ(X), F (B))

which forgets the component of sort b of the morphism.
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Proof. The set AlgΣb(TΣb(Xb),B) is in a natural bijection with the set SetSb(Xb, B)
and the set AlgΣ(TΣ(X), F (B)) is in a natural bijection with SetS(X, {Bs}s∈S)). We
have seen above that the two sets are as identic. 2

If we forget the elements of sort b and the operations those rank involves this sort
of a Σb-algebra freely generated by Xb we get an Σ-algebra freely generated by X,
i.e. F (TΣb(Xb)) = TΣ(X).

5. Some semantics

In an Σb-algebra B let

G = {l1 .=s1 r1, l2
.=s2 r2, . . . , ln

.=sn rn}

be a finite set of formal equalities between elements which have not sort b. We define
an element of sort b

Gb = l1 ==s1 r1 B∧ l2 ==s2 r2 B∧ . . . B∧ ln ==sn rn.

If B is not a Eb-algebra, then Gb may not be unique, which case we make a nonde-
terministic choice.

To pass from classic style to the boolean one we replace each finite set of formal
equalities G from A with Gb an element of sort b in Ab.

We mention the following specific properties of the algebra Ab

1. x A∧ y = At implies x = y = At, for each x, y ∈ Ab,

2. a ==s d = At implies a = d for each s ∈ S and each a, d ∈ As.

Lemma 16. If G is a finite set of formal equalities from TΣ(X) and h : TΣb(Xb) −→
Ab is an Σb-morphism then

hb(Gb) = At if and only if hs(u) = hs(v) for each u =s v ∈ G.

Proof. We use the above notation and we remark the following equivalent facts.

1. hb(Gb) = At,

2. hb(l1 ==s1 r1 ∧ l2 ==s2 r2 ∧ . . . ∧ ln ==sn rn) = At,

3. hs1(l1)A==s1hs1(r1) A∧ . . . A∧ hsn(ln)A==snhsn(rn) = At,

4. hsi(li)A==sihsi(ri) = At for each 1 ≤ i ≤ n,

5. hsi(li) = hsi(ri) for each 1 ≤ i ≤ n. 2
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Each classic Σ-conditional equation

γ = (∀X)l .=s r if G

may be changed in an Σb-conditional equation with a condition of sort b

γb = (∀Xb)l .=s r if Gb.

Let Γ be a set of classic Σ-conditional equations. We denote Γb = {γb : γ ∈ Γ} a set
of the Σb-axiomes.

Proposition 17. If A is an Σ-algebra and γ an Σ-conditional equation then

Ab |= γb if and only if A |= γ.

Proof. Using proposition 15 we identify an Σ-morphism h from TΣ(X) to A and
an Σb-morphism from TΣb(Xb) to Ab. For each such morphism h, from lemma we get
the following equivalent facts:

1. if hb(l1 ==s1 r1 ∧ l2 ==s2 r2 ∧ . . . ∧ ln ==sn rn) = At then hs(l) = hs(r),

2. if hsi(li) = hsi(ri) for each 1 ≤ i ≤ n then hs(l) = hs(r),

and the conclusion follows easily. 2

Corollary 18. If A is an Σ-algebra and Γ a set of Σ-conditional equations then

A |=Σ Γ if and only if Ab |=Σb Γb . 2

6. Boolean Versus Classic

We show that the classic Γ-rewritings in the Σ-algebra A have the same power as
the boolean Γb-rewritings in the Σb-algebra Ab.

Theorem 19. 1. For each s ∈ S, for each u, v ∈ As

u
∗=⇒Γ v in A if and only if u

∗=⇒Γb v in Ab.

2. For G = {l1 .=s1 r1, l2
.=s2 r2, . . . , ln

.=sn rn} a set of formal equations with
elements of sorts notequal to b

(∀i)li ↓Γ ri in A if and only if Gb ∗=⇒Γb At in Ab.

Proof. 1. Assume u
∗=⇒Γ v in A. Using the notation from the section “Classic

Style” this means u
∗−→Q v. As Q is the union of the sequence {Qn} there exists a

natural number n such that u
∗−→Qn v.

By induction by n. If n = 0 then u = v therefore u
∗=⇒Γb v in Ab.
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Assume u
∗−→Qn+1 v. We do another induction on the number of rewriting steps.

In case 0 u = v.
Suppose u

∗−→Qn+1 w and w −→Qn+1 v. Moreover by the inductive hypothesis
u

∗=⇒Γb w ı̂n Ab.
From w −→Qn+1 v we deduce w = c[a] and v = c[d] where a

.= d ∈ Qn+1. Therefore
there exist (∀Y )l .=s r if H ∈ Γ and the morphism h : TΣ(Y ) → A such that (∀p .=
q ∈ H)hs(p) ↓Qn hs(q), a = hs(l) and d = hs(r).

Therefore for each p
.= q ∈ H there exists gpg such that hs(p) ∗−→Qn gpg and

hs(q)
∗−→Qn

gpg. From the inductive hypothesis hs(p) ∗=⇒Γb gpg and hs(q)
∗=⇒Γb gpg.

We deduce hs(p) ==s hs(q)
∗=⇒Γb gpg ==s gpg = At.

From proposition 15 morphism h may be seen as a Σb-algebra morphism from TΣb(Y b)
to Ab. Therefore hb(Hb) ∗=⇒Γb At.

We deduce c[hs(l)] =⇒Γb c[hs(r)], i.e. w =⇒Γb v, therefore u
∗=⇒Γb v.

For the converse we assume u
∗=⇒Γb v in Ab. Using the notation in the section

“Boolean Style” this means u
∗−→B v. As B is the union of the sequence {Bn} there

exists a natural number n such that u
∗−→Bn v.

By induction on n. If n = 0 then u = v therefore u
∗=⇒Γ v in A.

Assume u
∗−→Bn+1 v. We do another induction on the number of rewriting steps.

For 0 steps u = v.
Suppose u

∗−→Bn+1 w and w −→Bn+1 v. Moreover by the inductive hypothesis
u

∗=⇒Γ w in A. From w −→Bn+1 v we deduce w = c[a] and v = c[d] where a
.= d ∈

Bn+1. Therefore there exist

(∀Y )l .=s r if {l1 .=s1 r1, l2
.=s2 r2, . . . , lk

.=sk rk} ∈ Γ

and the Σb-morphism h : TΣb(Y b) → Ab, such that

hb(l1 ==s1 r1 ∧ l2 ==s2 r2 ∧ . . . ∧ lk ==sk rk) ∗−→Bn At,

a = hs(l) and d = hs(r). We deduce

hs1(l1) ==s1 hs1(r1) ∧ hs2(l2) ==s2 hs2(r2) ∧ . . . ∧ hsk(lk) ==sk hsk(rk) ∗−→Bn At.

As the Γb-rewriting can not be made at top and the algebra Ab has specific properties
hsi(li) ==si hsi(ri)

∗−→Bn At for each 1 ≤ i ≤ k. As the Γb-rewriting can not be
made at top in hsi(li) ==si hsi(ri) and the algebra Ab has specific properties for each
1 ≤ i ≤ k there exists ai ∈ Asi such that

hsi(li)
∗−→Bn ai and hsi(ri)

∗−→Bn ai.

By the inductive hypothesis hsi(li)
∗=⇒Γ ai and hsi(ri)

∗=⇒Γ ai, therefore hsi(li) ↓Γ
hsi(ri) for each 1 ≤ i ≤ k, then w =⇒Γ v, hence u

∗=⇒Γ v.

2. Assume li ↓Γ ri ı̂n A for each i. There exists ui such that li
∗=⇒Γ ui and ri

∗=⇒Γ

ui. Using the first item of the theorem we get li
∗=⇒Γb ui and ri

∗=⇒Γb ui. We deduce
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l1 ==s1 r1 ∧ l2 ==s2 r2 ∧ . . . ∧ ln ==sn rn
∗=⇒Γb u1 ==s1 u1 ∧ . . . ∧ un ==sn un =

= At ∧ . . . ∧At = At.
For the converse, suppose that

l1 ==s1 r1 ∧ l2 ==s2 r2 ∧ . . . ∧ ln ==sn rn
∗=⇒Γb At.

As the Γb-rewriting can not be made at top and the algebra Ab has specific properties
we deduce for each 1 ≤ i ≤ n that li ==si ri

∗=⇒Γb At.
As the Γb-rewriting can not be made at top in li ==si ri and the algebra Ab

has specific properties we deduce that for each 1 ≤ i ≤ n there exists ui such that
li

∗=⇒Γb ui and ri
∗=⇒Γb ui. Using the first item of the theorem we get li ↓Γ ri. 2

Corollary 20. For each s ∈ S and for each u, v ∈ As

u =⇒Γ v ı̂n A if and only if u =⇒Γb v ı̂n Ab.

Proof. For each (∀Y )l .=s r if H ∈ Γ and for each Σb-morphism h : TΣb(Y b) → Ab,
using the second conclusion of the theorem 19 applied to the set h(H) and the equality
h(H)b = hb(Hb) we deduce

(∀u = v ∈ H)h(u) ↓Γ h(v) in A if and only if hb(Hb) ∗=⇒Γb At in Ab.

The conclusion follows easily applying one step rewriting definitions. 2

The above propositions prove that the classic rewriting in an Σ-algebra A is ob-
tained by boolean rewriting in the Σb-algebra Ab.

17. Conclusion

As the classic rewriting is equivalent to boolean rewriting in a specific algebra
we get the conclusion that the boolean rewriting is more general than the classic
rewriting.
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