ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 11, Number 3, 2008, 209-227

Genetic Model based Testing:
a Framework and a Case Study

F. IPATE, R. LEFTICARU

Department of Computer Science and Mathematics
University of Pitesti, Romania

E-mail: florentin.ipate@ifsoft.ro,
raluca.lefticaru@gmail.com

Abstract. The application of metaheuristic search techniques in test data
generation has been extensively investigated in recent years. Most studies, how-
ever, have concentrated on the application of such techniques in structural test-
ing. The use of search-based techniques in functional testing is less frequent, the
main cause being the implicit nature of the specification. On the other hand,
such techniques could be employed in functional test generation if an explicit,
graph-based, model, that describes the algorithm used to produce the required
results, existed. However, the process of creating and validating such a model
is usually a highly-specialized and time consuming task, which quite often can-
not be economically justified in the case of non-safety-critical applications. In
this paper we propose a framework for genetic model based testing. Under this
framework, a graph-based model of the system under test is built using a genetic
algorithm. Test data is then derived from the resulting model using (possibly)
metaheuristic search techniques to provide the desired level of coverage. The
approach is illustrated with a case study: an array sorting program.

Key words: evolutionary testing, genetic algorithms, model based testing,
genetic programming.

1. Introduction
The application of metaheuristic search techniques in test data generation has been

extensively investigated in recent years [21]. Most studies, however, have concentrated
on the application of such techniques in structural (program-based or white-box)

210 F. Ipate, R. Lefticaru

testing [8, 17, 25, 27, 30]. In structural testing, the program is represented as a directed
graph, in which each node corresponds to a statement or a sequence of statements
and each edge (branch) to a transfer of control between two nodes. Search-based
techniques are then used to generate test data to cover the desired graph elements
(nodes, branches or paths).

The application of search-based techniques in functional (specification-based or
black-box) testing is less frequent, the main cause being the implicit nature of the
specification. Typically, metaheuristic search techniques have been used to derive test
data from specifications in the form of a set of pre-condition/ post-condition blocks,
written in a language such as Z, in which the pre-condition defines valid inputs and
the post-condition defines the output. Each such pre-condition can be considered to
define a “path” in the specification and search-based techniques can then be used
to generate data to exercise each path [14]. Furthermore, the work of Tracey et
al. [29, 28, 31] extends this idea by also using the post-condition of each block to
validate the output produced along each path. Consequently, a failure is found when
an input situation is discovered that satisfies the pre-condition, but for which the
outputs violate the post-condition. An objective function of the form pre-condition
A- post-condition, that measures the “closeness” of the test data to uncovering such a
situation, is defined and metaheuristic search techniques are employed to seek failures
in the implementation.

Specifications of the type discussed above can inherently be translated into pro-
grams composed of “if-else” statements and so the paths defined in the specification
can be mapped onto paths in the actual program implementation. However, software
functionality is rarely this simple and quite often there is no straightforward mapping
between the (possibly formal) specification and the actual implementation. The spec-
ification is usually just a description of what a system does, without giving the details
of how this is achieved. Consider the case of an array sorting, for example. A specifi-
cation will just state that the system outputs an array with identical elements as the
input array, but ordered from the smallest to the largest (for illustration, a Z “sort”
schema is given in Fig. 1 — the names of the predicates used are self-explanatory and
so no further detail is provided). The specification does not say anything about what
strategy is to be used to implement this functionality (e.g. bubble sort, quick sort,
etc.), so, clearly, there is no direct mapping between it and the resulting implemen-
tation. Consequently, if the aforementioned test generation techniques are to be used
in this case, the specification will have to first undergo a transformation that will
allow paths and their corresponding pre-conditions and post-conditions to be clearly
identified.

___sort
a?, bl : seqITEM

dom a? C 1...maxelements

to-bag(a?) = to_bag(b!)
ordered(b!)

Fig. 1. Z schema for array sorting.

Genetic Model based Testing: a Framework and a Case Study 211

An apparently simple solution to this problem would be to re-write the specifi-
cation as a set of pre-condition/ post-condition blocks to which the aforementioned
techniques can be directly applied. However, for even fairly simple specifications, this
approach may yield an extremely large number of such blocks (e.g. the specification
of a program that sorts an array of n elements would have n! blocks), so quite often
this approach is impractical.

A more reasonable alternative would be to replace the original, implicit, speci-
fication with an explicit, graph-based, model that will not only describe what the
system is supposed to do but also how it does it, i.e. the algorithm used to produce
the required results. Such an explicit model can be produced using state-based lan-
guages, such as Statecharts [10] or stream X-machines [11]. A set of test paths can
be derived from the model using finite state machine [26] or stream X-machine [3, 12]
based methods and metaheuristic search techniques can then be used to generate test
data to drive these paths. For instance, genetic algorithms are used in [20] to derive
test data from a statechart model of a class and the reported experimental results
are encouraging. The main problem with this approach is that it requires the con-
struction of a formal model of the system under test, which may be as complex as
the program itself. The process of creating and validating such a model (proving that
it satisfies the requirements) is usually a highly-specialized and time consuming task,
which quite often cannot be economically justified in the case of non-safety-critical
applications.

In this paper we propose an approach whereby an (approximate) graph-based
model of the system under test is built using a genetic algorithm. The model is
then used as basis for test generation: a set of paths are derived from the model
and then these are translated into actual test data using (possibly) metaheuristic
search techniques. While, obviously, an exact model of the system is desirable, a
close enough approximation is often considerably less computationally intensive to
produce and may still provide a reasonable basis for test generation. The approach
is illustrated on an array sorting program and experimental results that support the
method are reported.

The paper is structured as follows. Section 2 provides a brief overview of genetic
algorithms. Section 3 defines the modelling formalism used, called flowchart-machine
(F-machine). The generation of F-machine models using genetic algorithms is then
discussed in section 4, while section 5 addresses the test derivation problem. Ex-
perimental results are provided in section 6 and the next section provides a brief
comparison to related work. Finally, conclusions are drawn in section 8.

2. Genetic algorithms

Genetic algorithms (GAs) [33, 23] are a class of evolutionary algorithms, that use
techniques inspired from biology, such as selection, recombination (crossover) and
mutation. They were conceived by John Holland in the United States in the late
sixties and are closely related to evolution strategies, developed independently at
about the same time in Germany by Ingo Rechenberg and Hans-Paul Schwefel.

212 F. Ipate, R. Lefticaru

GAs are used for problems which cannot be solved using traditional techniques
and for which an exhaustive search of the solution space is impractical, by encoding
a population of potential solutions on some data structures, called chromosomes (or
individuals) and applying recombination and mutation operators to these structures.
A high level description of a genetic algorithm taken from [21] is given in Fig. 2. The
fitness (objective) function assigns a score (fitness) to each chromosome in the current
population. The fitness of a chromosome depends on how close that chromosome is
to the solution of the problem. Throughout this paper, the fitness is considered to be
positive and so finding a solution corresponds to minimising the fitness function, i.e.
a solution will be a chromosome with fitness 0. The algorithm terminates when some
stopping criterion has been met, for example when a solution is found, or when the
number of generations has reached the maximum allowed limit.

Randomly generate or seed initial population P

Repeat
Evaluate fitness of each individual in P
Select parents from P according to selection mechanism
Recombine parents to form new offspring
Mutate P’
Construct new population P’ from parents and offspring
P—P

Until Stopping Condition Reached

Fig. 2. Genetic Algorithm.

Various mechanisms for selecting the individuals to be used to create offspring,
based on their fitness, have been devised [9]. Holland’s original GA used fitness-
proportionate selection, in which the “expected value” of an individual (i.e. the
expected number of times an individual will be selected to reproduce) is that individ-
ual’s fitness divided by the average fitness of the population. This kind of selection
leads to “premature convergence”. To address such problems, GA researchers have
experimented other mechanisms such as sigma scaling, elitism, Boltzmann selection,
tournament, rank and steady-state selection [23].

After the selection step, recombination takes place to form the next generation
from parents and offspring. Single-point crossover, probably the best known form of
recombination, randomly chooses a locus and exchanges the subsequences before and
after that locus between two chromosomes to create two new offspring. For example,
the strings 00000000 and 11111111 could be crossed over at the third locus to produce
the two offspring 00011111 and 11100000. Crossover is applied to individuals selected
at random, with a probability (rate) p.. Depending on this rate, the next generation
will contain the parents or the offspring.

The mutation operator randomly flips some bits in a chromosome. For example,
the string 00000100 could be mutated in its second position to yield 01000100. Muta-
tion can occur at each bit position in a string with some probability p.,,, usually very
small [23]. This operator is responsible for introducing variation in the population.

Genetic Model based Testing: a Framework and a Case Study 213

3. Flowchart-machine

The modelling formalism used in this paper will be called a flowchart-machine (ab-
breviated F-machine) and is essentially a formalization of the well-known flowchart,
widely used for describing algorithms and processes. Such a model can be easily en-
coded into a sequence of integers (the chromosome representation of an F-machine)
as detailed later in the paper.

Definition 3.1. A flowchart-machine (F-machine) is a tuple Z = (In, Out, Q,
M, P, @, qo, q7, d, h, input, output), where:

In is the (possibly infinite) input set.
Out is the (possibly infinite) output set.
Q@ is the finite set of non-final states.

M is a (possibly infinite) set called memory. In our applications, the memory
will have the form M =V} x ... x V,,, n > 1, where V; denotes the domain of
some program variable, 1 <7 < n.

P is a finite set of distinct predicates on M. P may contain the “true” predicate,
that holds for all values of M.

® is a finite set of distinct processing functions of type M — M. ® may contain
the identity function id, used when no actual processing takes place.

qo € Q is the initial state.
qr ¢ Q is the final state.

d is a function of type Q — P, that assigns a predicate to each non-final state.
If the predicate associated with the state ¢ is true then ¢ is called a sequence
state, otherwise ¢ is called a decision state.

h is a function of type @ x B — (Q U {gs}) x ®, where B = {T, F'} is the
Boolean set. h(q,T) represents the next state and the corresponding processing
function for the case in which d(q) is true, whereas h(q, F') represents the next
state and the processing function for the case in which d(q) is false. When ¢
is a sequence state, the “false” branch is immaterial, however the definition is
given in this form for the sake of uniformity.

input : In — M 1is the input function that maps an input into an initial
memory value.

output : M — Out is the output function that maps a final memory value into
an output.

214 F. Ipate, R. Lefticaru

For illustration, consider the graphical representation of an F-machine for an array
sorting (using a bubble sort like approach) given in Fig. 3. The predicate associated
with each state is given inside the circle representing the state. Each transition be-
tween states is labelled by a pair b/¢, where b = T for a “true” transition and b = F for
a “false” transition and ¢ denotes the processing function associated with the transi-
tion. The memory will have to hold the n values to be sorted as well as the two indexes
i and j, so M = R™ x N2, where R is the set of reals and N the set of positive integers.
In = R"™ and Out = R™ will hold the original and sorted array, respectively, so the in-
put and output function will be defined by: input(a[l],...,aln]) = (a[l],...,a[n],1,1)
and output(al[l],...,a[n],i,5) = (a[l],...,a[n]), i,57 € N. In Fig. 3 swap(i,j) ex-
changes the values of the ith and jth components of the memory, inc(i) increases the
value of the integer ¢ by 1, while init(¢) sets the value of i to 1.

Fig. 3. F-machine model of an array sorting.

The computation of an F-machine takes the form of the traversal of all paths
(sequences of arcs) from the initial state to the final state and the application, in
turn, of the arc labels (the processing functions) to the initial memory value. The
correspondence between the input sequence applied to the machine and the output
produced gives rise to the (partial) function computed by the machine.

Definition 3.2. Given an F-machine Z, the (partial) function computed by Z,
[Z] : In — Out, is defined by: [Z](in) = out if there exist processing functions
¢1,--.,0n, n > 1, such that the following hold simultaneously:

e there is a path from the initial state gy to the final state g labelled by ¢1, ..., ¢y,
i.e. there exist non-final states q1,...,¢,—1 such that for all 4, 0 <i <n —1,
either h(g;, T) = qi+1 A d(g;) or h(gi, F) = ¢it1 A — d(g;), where g, = g5;

Genetic Model based Testing: a Framework and a Case Study 215

e the sequence of processing functions ¢1, ..., ¢, transforms m into m/’, i.e. there
exist memory values my, ..., m, such that input(in) = mg and output(m,) =
out and for all 4, 0 <i <n—1, ¢;(m;) = myy1.

It can be observed that, due to the deterministic nature of the F-machine defined
above, [Z] is a (partial) function rather than a relation. Also note that [Z] is partial
if there is some initial memory value for which M loops indefinitely.

4. F-machine model generation

A genetic algorithm will be used to produce an F-machine model of the system
under test. Therefore, the basic approach is to generate a random population of chro-
mosomes (representations of F-machine models of the system under test), evaluate
their fitness, perform various genetic operations on them based in some way on their
fitness and then re-evaluate the fitness of the newly produced generation. The pro-
cess continues until a satisfactory model has been found or a maximum number of
generations has been produced.

The algorithm may not attempt to construct a precise model of the system. A
good approximation may be much less computationally intensive to produce and may
still be sufficient for testing purposes. In the case of an array sorting, for example,
it should be sufficient to find a model that sorts arrays of n elements, with n fixed
and sufficiently large to illustrate the underlying ideas of the algorithm instead of a
general model, that will sort arrays of any size (up to a given maximum length). For
more complex systems, many approximate models, which cover different aspects of
the functionality, may be needed.

4.1. Defining the primitives

In order to apply a genetic algorithm to a problem, each candidate solution must
be represented in such a way that it can evolve by applying genetic operations. In
the case of an F-model, this is achieved by defining a set of suitable primitives, that
represent the set of predicates P and processing functions ® that any model of the
system may use. In general, the set of primitives required for the construction of a
model, for a particular system, can be chosen from the operations that would normally
appear in the implementation, as presented in what follows.

Consider again the array sorting example. If the array is assumed to always have
a fixed number of elements, n > 2, then it will be sufficient to have M = R", input
and output the identity function and the following primitives:

e P: the set of predicates greater(i,j), 1 < i < j < n, defined by greater(i,j)
= alt] > a[j], where a[i] denotes the value of the ith component of the memory.
If the model may also contain sequential states, then true € P.

e ®: the set of functions swap(i,j), 1 <i < j < n, plus the identity function id
for when no processing takes place.

The state-transition diagram of a correct model for n = 4 is as represented in Fig. 4.

216 F. Ipate, R. Lefticaru

Fig. 4. F-machine model for n = 4.

4.2. Encoding the model population

Besides defining the model primitives, we need to establish a reasonable upper
bound on the states of the candidate models. This entails assessing the scale of the
correct model of the system under test and, along with the definition of the model
primitives, requires some knowledge of the way the system has been implemented. As
shown by our experiments (Table 3), a too tight an upper bound (i.e. very close to
the minimum possible number of states of a correct model) will reduce the degree of
freedom of the candidate models and hence increase the number of evolutions required
to produce a solution. Conversely, a too large an upperbound will produce unjusti-
fiably large solutions, thus increasing the duration of an evolution and unnecessarily
complicating the test generation process (see section 5).

An F-machine with (at most) k non-final states can be represented as a sequence
of 5 - k integers, by encoding the information about each state into the 5 elements as
follows:

e 1 : the predicate associated with the state.

e 2 and 3: the next-state and the corresponding processing function for when the
predicate associated with the state is true.

e 4 and 5: the next-state and the corresponding processing function for when the
predicate associated with the state is false.

Obviously, this encoding corresponds to the worst case scenario, in which the
space of candidate models corresponds to the set of all F-machines of the given size
that can be constructed from the set of available primitives. Naturally, additional

Genetic Model based Testing: a Framework and a Case Study 217

knowledge about the system will normally be available and this will enable a more
precise delimitation of the solution space and hence a more efficient encoding. For the
array sorting example, one can naturally assume that a swap(i, 7) function will always
be attached to the true branch of a greater(i, j) predicate, whereas no processing (i.e.
the identity function) will be associated with the false branch. In this case, only 3
integers will be sufficient to encode the information about a state.

4.3. Fitness function

The fitness function will measure how far the output produced by an F-machine
model is from the expected output. In the case of an array sorting, the fitness function
will measure the “disorder” of the output array. Given two elements of the array, ali]
and a[j], 1 < i < j < mn, the disorder of the pair (a[i], a[j]) can be measured by Korel’s
objective function: d;; = 0 if a[i] < a[j] and a[i] — a[j] otherwise. In our experiments,
we used a normalized version of this function: f;; =1 — 1.001~%s. Thus, the fitness
function for an array a[l], ..., a[n] was f(a[l],...,aln]) =32, <, fij-

The genetic algorithm is provided with a set of test data to be used for fitness
evaluation. A “global” fitness of each candidate model will be then calculated as the
average of the fitness values obtained for each individual test value.

An important aspect to consider is the selection of the test data. Often, the input
domain is very large or even infinite and so not all possible values can be used for
fitness evaluation. In such cases, a set (typically randomly generated) of sufficient size
to provide a good representation of the problem will be needed to train the algorithm.
In the case of the sorting algorithm, an extreme situation would be to present all
candidate models with only one sequence of numbers for the entire run. In this case,
the algorithm will evolve quickly towards a model which will correctly order the given
sequence, but it is extremely unlikely that it will constitute a correct model of a
general sorting algorithm. Interestingly, our experiments have shown that changing
the test data periodically (e.g. each generation) will increase the performance of the
genetic algorithm only if the test set is relatively small (e.g. 5 arrays for a model
that sorts arrays of 4 elements); for sufficiently large test sets, it may have an adverse
effect.

5. Test data generation

The model thus found is then used as basis for test generation: test data is selected
to achieve the required degree of graph coverage. Obviously, the selection procedure
will depend on the level of coverage sought. For example, a set of paths that cover
all branches of the F-machine graph can be constructed by devising a test tree in
a breadth-first manner as in [5]. A node in the tree is a leaf if there are no edges
emerging from it (e.g. the final state of the F-machine) or if its label is the same as
that of a non-leaf node that has already been encountered. The tree obtained for the
array sorting model example is as represented in Fig. 5. The leaf nodes are in bold.

218 F. Ipate, R. Lefticaru

Then branch coverage is achieved by selecting all total paths in the tree (i.e. from the
initial node to each of the leaf nodes). Alternatively, the tree could be constructed in
a depth-first fashion as in [2].

Fig. 5. Test tree for array sorting.

Once the paths have been selected, we need to find appropriate input values to
exercise the selected paths. A commonly used technique for this purpose is symbolic
execution [15, 6]. Rather than running the program on actual input values, this tech-
nique derives a set of constraints in terms of the input variables which describe the
conditions necessary for the traversal of a given path. For example, the leftmost path

<qo ——>q —L g3 —Ls o > will produce the following constraints: a[l] > a[2],

a[l] > a[3], a[l] > a[4]. Constraint satisfaction problems are in general NP-complete
[6]. However, linear programming techniques can be applied if the constraints are
linear [6]. If this is not the case, constraint satisfaction based test generation tech-
niques, such as domain reduction [7] or dynamic domain reduction [24] can be used.
However, these static test generation techniques typically suffer from problems due
to computed storage locations and loops. Alternatively, metaheuristic search tech-
niques, such as genetic algorithms or simulated annealing [30, 28] can be applied to
dynamically generate test data that meet the desired level of coverage [25, 31, 32].
Furthermore, the test generation strategy can be extended to check the confor-
mance of the implementation to the F-machine model by applying test data to the
implementation and then validating the output against the model as in the work
of Tracey et al. [29, 28, 31]. Suppose we have determined a set of paths from
the initial state of the F-machine to its final state that achieve the desired level
of graph coverage. The traversal of each such path will yield the corresponding
pre-condition (in terms of input variables) and post-condition (in terms of input

and output variables) for the path. For example the path < qo Lo

Genetic Model based Testing: a Framework and a Case Study 219

3 —sqo gL g L qf > from our F-machine example will produce

the precondition (a[l] > a[2]) A (a[l] > a[3]) A (a[1] > a[4]) A (a[2] < a[3]) A (a[3] <
al4]) A (al4] < all]) and the post-condition (b[1] = a[2]) A (b]2] = a[3]) A (b[3]
a[4]) A (b[4] = al]), where b denotes the output array (the evolution of memory vari-
ables is described in Table 1). An objective function of the form pre-condition A—
post-condition is then defined and metaheuristic search techniques are used to seek
faults in the implementation. To improve the power of the search, the pre-condition
and negated post-condition are first converted to Disjunctive Normal Form (DNF).
For example, A A B A =(C A D) will be decomposed into two disjuncts, A A B A =C
and A A B A —D and so finding a solution to the original expression will be reduced
to finding a solution to any of the two disjuncts. Consequently, each disjunct will be
targeted in a separate search attempt. The fitness function is then calculated accord-
ing to the rules in Table 4, where the value K, K > 0, refers to a constant which is
always added if the term is not true.

Table 1. Variable evolution for the transition path
in the first column

Transition ‘ Predicate ‘ New array values ‘ Precondition
T

qo —— q1 a1 > az [az, a1, a3, a4] a1 > as
T

g1 —— Q3 as > as [a2, a3, a1, a4] a1 > as
T

g3 —— Qo as > aq [az, as, as,a1] ai > aq
F

go —— G2 a1 < az [az, as, as,a1] az < as
F

g2 —— G4 az < az [az, a3, a4, a1] az < as
F

s ——> gy a3 < aq [az, as, a4, a1] as < a1

Thus, test generation can be regarded as a two stage process. In the first stage,
test data is derived from the F-machine model to achieve the desired level of coverage.
Once these initial values, and implicitly the corresponding paths through the model,
have been selected, test data is derived from the implementation under test (second
stage). In the second stage, for each chosen path, test values are selected according
to a fitness function that indicates how close to producing a fault on the given path
the implementation is.

6. Experimental results

In the first stage of our experiments, we investigated the generation of F-machine
models for sorting an array of fixed length n,n > 3, using genetic algorithms.

Several encodings for the F-machine were tried, by varying the primitives and
the number of elements used for encoding. Three sets of predicates were used: (a)
greater(i,j), with 1 < i # j < n, (b) greater(i,j), with 1 < i < j < n and (c)
greater(i,i + 1), with 1 <4 < n. The F-machine was encoded (1) on 5 - k integers

220 F. Ipate, R. Lefticaru

(the general case, as described in subsection 4.2) and (2) on 3 - k integers. The
second encoding always attached the swap function to the true branch for ¢ < j. As
expected, the second type of encoding, combined with the predicate set (¢) produced
the fastest convergence of the genetic algorithm. The results given further in this
paper (Tables 2 and 3) are those produced in this case. For comparison, the success
rate for combinations (a)(1), (b)(1), (¢)(1), (a)(2), (b)(2) and (¢)(2) (forn =4,k =5
and 24 learning arrays permutations - see below for details) was 59%, 67%, 90%, 93%,
97% and 98%, respectively, and the average generation number approximately 69, 58,
31, 38, 27 and 16, respectively.

Table 2. Genetic algorithm results for evolving F-machines, n =4, k =5

Samples used to | Correct . .
evolve the F-ma- | F-machi- | Failures First Ave. Diffe-
. gen. gen. rence
chines nes
5 Fixed arrays 90.20% 9.80% 10.09 26.91 16.82
5 Random arrays 96.50% 3.50% 7.39 18.60 11.21
10 Fixed arrays 93.50% 6.50% 12.35 20.03 7.68
10 Random arrays 96.00% 4.00% 10.27 18.27 8.00
b Fixed amrays +5 | o5 5000 | 480 | 10.87 18.29 7.42
random arrays
16 Fixed arrays 97.50% 2.50% 13.90 16.20 2.30
16 Random arrays 95.80% 4.20% 11.04 17.06 6.02
16 Binary arrays 99.70% 0.30% 11.33 11.75 0.42
6 Fixed arrays +10 | g5 1000 | 3.60% 12.41 16.73 4.32
random arrays
24 Fixed arrays 97.70% 2.30% 14.82 15.65 0.83
24 Random arrays 95.30% 4.70% 13.72 17.40 3.68
24 Permutations 98.30% 1.70% 15.77 15.77 0.00
10 Fixed arrays + | g6 3000 | 3709 | 14.00 16.21 2.12
14 random arrays

The algorithms were implemented in Java, using JGAP (Java Genetics Algorithm
Package) [13]. An elitist genetic algorithm was used, with the following default param-
eter values: a population size of 20 individuals and a maximum allowed number of evo-
lutions equal to 100. The JGAP operators used were BestChromosomesSelector, with
a 0.8 rate (this parameter controls how many chromosomes of the original population
will be considered for selection to the next population) and MutationOperator, with a
default 1/15 mutation rate. A heuristic real value crossover inspired from [22] was used
for recombination. This uses the values of the objective function for determining the
direction of the search. Given parents x = (z1,...,2y), ¥ = (y1,..., Yn), @ fitter than
y, this approach will generate one offspring z = (21, ..., z,) with z; = o (z; — y;) + 24,
a € (0,1). Instead of an o € (0,1) randomly obtained, as in [22], we considered a
fixed o = 0.2, for which better performance was obtained.

Genetic Model based Testing: a Framework and a Case Study 221

Table 3. Genetic algorithm results for evolving F-machines

n :array | k: state Correct First Avg.
length number | F-machines gen. gen.
4 3 64.40% 35.81 50.81
4 4 89.80% 18.89 25.06
4 5 95.90% 13.39 17.22
4 6 98.70% 11.06 12.56
4 7 98.90% 10.23 11.64
4 8 99.33% 8.77 10.09
5 4 47.67% 49.39 69.05
5 5 71.33% 31.92 50.18
5 6 83.33% 25.83 38.64
5 7 88.33% 23.46 34.22
5 8 92.00% 22.68 31.17
5 9 95.33% 20.51 27.92
5 10 97.33% 19.77 26.41
6 5 32.67% 61.90 82.93
6 6 49.33% 51.99 75.63
6 7 62.00% 44.11 68.12
6 8 73.67% 38.35 58.26
6 9 75.00% 35.36 55.65
6 10 76.67% 35.48 55.39
6 11 81.67% 33.89 51.68
6 12 83.00% 30.00 50.62

The fitness function used to evaluate the F-machine adequacy measured the disor-
der of the output array obtained after the sorting. The formula was given in subsection
4.3'. Furthermore, the fitness of an F-machine, as calculated by the algorithm, may
be 0 but the machine may only sort correctly the provided samples. For this reason,
an additional “test for generality” was performed whenever an F-machine with fitness
0 was found. This involved evaluating the machine fitness on 100 randomly generated
arrays, the set of all permutations of {1,2,...,n} and the set of all binary arrays -
the sequences of length n of Os and 1s.

Table 2 shows the results obtained for evolving F-machine models with £ = 5
states for sorting arrays of length n = 4. The second column in the table shows the
percentage of correct F-machine models evolved, while the third column records the
percentage of unsuccessful runs (i.e. when the genetic algorithm could not evolve
an F-machine with fitness = 0 that passes the test for generality in the maximum
allowed number of evolutions, 100). The fourth column indicates the average of the
first generation when an individual with fitness 0 was found (usually, this failed the
test for generality), while the fifth column shows the average number of generations
needed to evolve a completely fit individual (which passes the test for generality).
The last column is the difference between the 5th and the 4th columns.

IThe fitness function is assigned the maximum allowed value when the model loops indefinitely
on the given input.

222 F. Ipate, R. Lefticaru

The algorithm was trained using several types of “learning” arrays: fixed arrays
(chosen at random); variable arrays (random arrays changed each generation); com-
binations of fixed and variable arrays; binary arrays; the set of all permutations of
{1,2,3,4}. Binary arrays and permutations offer a good sampling of the input domain
and are used mainly as terms of comparison.

Our experiments show that changing the (randomly generated) samples period-
ically (e.g. each generation) will increase the performance of the genetic algorithm
only if the sample is relatively small (e.g. 5 — 10 arrays for n = 4). For larger test
sets (e.g. 24 arrays for n = 4), changing the test data periodically will slightly reduce
the number of generations needed to produce a candidate with fitness 0 on the given
samples, but the first solution found will typically be more likely to fail the test for
generality than the first solution produced in the case of fixed test data. Furthermore,
for reasonably large test sets (e.g. 24 arrays for n = 4), the algorithm will perform
almost as well on random samples as on representative samples, such as permutations,
whose selection assumes knowledge of the problem to be solved.

Table 3 summarizes the results obtained for n € {4,5,6} and k € {n—1,...,2-n}
when the samples provided to the machines were 25 variable arrays (random arrays
changed each generation). As above, an additional test for generality was performed
as well. As expected, an increase in the (maximum) number of states k resulted in
a a reduction of the number of evolutions required to produce a solution. On the
other hand, a too large k will obviously produce overly complicated and ultimately
unusable models.

In the second stage of our experiments, the “correct” F-machine models generated
in the first stage were used as basis for test generation to achieve branch coverage.
It is worth noting that many of the F-machines models obtained have unreachable
states (e.g. state q; from Fig. 62) and transitions that cannot be covered (e.g. the
two transitions from the unreachable state g; and the true branch from g4). In order
to achieve branch coverage, as discussed in section 5, a test tree is constructed first.
Then, for each path in the tree (from the initial node to the leaf nodes) the test data
is obtained using a genetic algorithm.

Analogously to [20], the fitness of the test data (in our case arrays of length 4)
aimed at covering a given path in the tree is calculated using the formula:

fitness = approach_level + normalized_branch_level

The approach level is 0 for individuals which follow the given path, otherwise it is
calculated by subtracting one from the number of branches lying between the node
from which the individual diverged away from the path and the last node. The branch
level will compute, for the place where the actual path diverges from the required one,
how close is the precondition predicate to being true. The normalized branch level
can be derived from the guard predicates using the transformations given in Table 4
and then a function that maps every positive value onto [0, 1].

2Dashed arrows represent false branches with the identity function, while standard arrows are
used for true branches with the swap function.

Genetic Model based Testing: a Framework and a Case Study 223

Fig. 6. F-machine model for n = 4 automatically generated.

Table 4. Tracey’s objective functions

| Predicate [Objective function obj

a=b if abs(a — b) = 0 then 0 else abs(a — b) + K

a#hb if abs(a — b) # 0 then 0 else K

a<b if a —b < 0 then 0 else (a —b) + K

a<b if a —b <0 then 0 else (a —b) + K

a>b if b—a <0 then 0 else (b—a)+ K

a>b ifb—a<0thenOelse (b—a)+ K
Boolean | if true then 0 else K

anb obj(a) + obj(b)

aVb min(obj(a), obj(b))

axorb | obj((aA=b)V (—aAb))

-a Negation is moved inwards and propagated over a

The average number of paths in the test tree obtained for n = 4 and k = 5
was 5.3 (calculated from 1000 executions of the program) so the resulting test data
was usually represented as 5 arrays of length n = 4. The test data was successfully
generated for all the feasible paths of the F-machine in just a few generations.

In order to evaluate the effectiveness of our approach, we used the test data gener-
ated for n = 4, k = 5 to build JUnit test suites for a set of 17 different implementations
(classical sorts like bubble, quick, insertion, shell, heap, merge or selection sort and
also some non-conventional algorithms for sorting arrays of fixed length 4). The cy-
clomatic complexity of the Java implementations was between 9 and 26; the overall
line coverage obtained for the classical algorithms was 100% (rounded), while the
branch coverage was 99%, as measured using jcoverage Eclipse plugin. To avoid any
bias, the same test suite was used against all implementations. The worst results were
obtained for one of the non-conventional sorting algorithms (80% and 93%, respec-
tively), but this was mainly due to the large number of paths in the implementation
(corresponding to imbricated if statements for all possible cases).

224 F. Ipate, R. Lefticaru

7. Related work

Genetic programming (GP) [1, 18, 19] is a general purpose method for automat-
ically generating a computer program. Concepts from genetic algorithms are used
to evolve a population of computer programs according to a fitness landscape deter-
mined by the ability of a program to perform a given computational task. GP evolves
computer programs represented in memory as tree structures, which can be naturally
built in a recursive manner. Every tree node has an operator function and every
terminal node has an operand, making mathematical expressions easy to evolve and
evaluate. Consequently, traditionally GP favours the use of programming languages
that naturally embody tree structures such as Lips or other functional languages. GP
is very computationally intensive and so in the 1990s it was mainly used to solve
relatively simple problems. More recently, however, improvements in GP technology,
growth in CPU power and the parallelization of GP have considerably widened its
application area, from hardware design to quantum computing and game playing.

Even though in this paper we advocate the automatic construction of a model of
a system using a genetic algorithm, at least two aspects differentiate our approach
from GP. Firstly, a model of the system is generated, rather than the program itself.
The model may not be at the lowest possible level. On the contrary, using his/her
knowledge of the problem to be modelled, the designer (tester) will be expected to
use sufficiently high level primitives for the model in order to facilitate a rapid con-
vergence of the genetic algorithm. Furthermore, when an exact model may be too
computationally intensive to produce, one or more approximate models may be used
as basis for test generation instead. Secondly, the control flow of a program written
in a main-stream imperative language is graph-based rather than tree-based. Conse-
quently, a graph-based model would be the natural choice to use in test generation.

Interestingly, the GP paradigm is applied by Kinnear [16] to the task of evolving
iterative sorting algorithms. The most concise of the sorts evolved in the runs, which
had a total of 42 functions and terminals, would still have to have been extensively
hand simplified before could be of any use for the tester, as a realistic model. Fur-
thermore, the next smallest program evolved had 78 functions and operations and,
typically, they were in the 150 to 300 range.

A particular subset of GP, called linear genetic programming (LGP) [4], that
evolves computer programs as sequences of imperative instructions, also exists. Its
proponents claim that, due to its graph-based data flow and techniques for detecting
and eliminating non-effective code, it can produce more compact program solutions
than the traditional, tree-based, GP. Still, the differences from our approach with
regard to its purpose and the level of primitives remain.

8. Conclusions

In this paper we propose a framework for genetic model based testing. Under this
framework, an (approximate) graph-based model of the system under test is built
using a genetic algorithm and test data is then derived from the resulting model using

Genetic Model based Testing: a Framework and a Case Study 225

(possibly) metaheuristic search techniques to provide the desired level of coverage.
The approach is illustrated on an array sorting program.

The process of creating and validating a model for the system under test is usually
a costly and time consuming task. Under this approach, this process can be fully
automated. Test data can also be automatically derived from the resulting model.
The benefit of using this kind of approach, compared to an evolutionary structural
testing strategy, is the usage of model post-conditions. In this way the conformance
of the implementation with the specification can also be tackled.

Often an exact model may be too computationally intensive to produce. In this
case, many approximate models, that cover different functional aspects, may be gen-
erated and used for testing purposes.

The approach proposed here could be complemented with traditional functional
methods based on domain partitioning. For example, in the case of an array sorting,
it would be natural to consider separate test cases for when the array size is 0, 1,
max — 1, max and maz + 1, where maz denotes the maximum size. On the other
hand, when it is not straightforward to describe the system processing in terms of
its inputs and outputs, traditional functional techniques may provide only a shallow
coverage of the system functionality and, consequently, they may not be sufficient on
their own.

Naturally, further case studies and experimental work is needed to better evaluate
the merits of the approach and to develop it further. Ultimately, appropriate tools
will have to be produced.

References

[1] BANZHAF W., NORDIN P., KELLER R., FRANCONE F., Genetic programming -
an introduction: on the automatic evolution of computer programs and its application,
Morgan Kaufmann, 1998.

[2] BINDER R. V., Testing object-oriented systems: models, patterns, and tools, Object
Technology, Addison-Wesley, 1999.

[3] BOGDANOV K., HOLCOMBE M., IPATE F., SEED L., VANAK S., Testing methods
for X-machines: a review, Form. Asp. Comput., 18, 1, 2006, pp. 3-30.

[4] BRAMEIER M., On linear genetic programming, PhD thesis, University of Dortmund,
2004.

[5] CHOW T. S., Testing software design modeled by finite-state machines, IEEE Trans.
Softw. Eng., 4, 3, 1978, pp. 178-187.

[6] CLARKE L., A system to generate test data and symbolically execute programs, IEEE
Trans. Softw. Eng., 2, 3, 1976, pp. 215-222.

[7] DeMILLO R. A., OFFUTT A. J., Constraint-based automatic test data generation,
IEEE Trans. Softw. Eng., 17, 9, 1991, pp. 900-909.

[8] FERGUSON R., KOREL B., The chaining approach for software test data generation,
ACM Trans. Softw. Eng. Methodol., 5, 1, 1996, pp. 63-86.

[9] GOLDBERG D. E., DEB K., A comparative analysis of selection schemes used in ge-
netic algorithms, in Proceedings of the 1st Foundations of Genetic Algorithms, 1990,
pp- 69-93.

226 F. Ipate, R. Lefticaru

[10] HAREL D., POLITI M., Modeling reactive systems with statecharts: the STATEMATE
approach, McGraw-Hill, New York, 1998.

[11] HOLCOMBE M., IPATE F., Correct systems: building a business process solution,
Springer Verlag, London, 1998.

[12] IPATE F., Testing against a non-controllable stream X-machine using state counting,
Theoretical Comput. Sci., 353, 1-3, 2006, pp. 291-316.

[13] JGAP home page, http://jgap.sourceforge.net/, last accessed July 2008.

[14] JONES B., STHAMER H., EYRES D., The automatic generation of software test data
sets using adaptive search techniques, in Proceedings of 3rd International Conference on
Software Quality Management, 1995, pp. 435-444.

[15] KING J., Symbolic execution and program testing, Communications of the ACM, 19, 7,
1976, pp. 385-394.

[16] KINNEAR K. E., Generality and difficulty in genetic programming: evolving a sort, in
The Fifth International Conference on Genetic Algorithms, 1993, pp. 287-294.

[17] KOREL B., Automated software test data generation, IEEE Trans. Softw. Eng., 16, 8,
1990, pp. 870-879.

[18] KOZA J. R., Genetic programming: on the programming of computers by means of
natural selection (complex adaptive systems), MIT Press, 1992.

[19] KOZA J. R., KEANE M.A., STREETER M.J., MYDLOWEC W., LANZA G., YU
J., Genetic programming IV: routine human-competitive machine intelligence, Kluwer
Academic Publishers, 2003.

[20] LEFTICARU R., IPATE F., Automatic state-based test generation using genetic algo-
rithms, in SYNASC 07: Proceedings of the Ninth International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, IEEE Computer Society, 2007, pp.
188-195.

[21] McMINN P., Search-based software test data generation: a survey, Softw. Test., Verif.
Reliab., 14, 2, 2004, pp. 105-156.

[22] MICHALEWICZ Z., Genetic algorithms + data structures = evolution programs (3rd
ed.), Springer-Verlag, 1996.

[23] MITCHELL M., An Introduction to Genetic Algorithms, MIT Press, Cambridge, USA,
1998.

[24] OFFUTT A. J., JIN Z., PAN J., The dynamic domain reduction procedure for test data
generation, Software - Practice and Experience, 22, 2, 1999, pp. 167-193.

[25] PARGAS R. P., HARROLD M. J., PECK R., Test-data generation using genetic algo-
rithms, Softw. Test., Verif. Reliab., 9, 4, 1999, pp. 263-282.

[26] SIDHU D. P., LEUNG T.-K., Formal methods for protocol testing: a detailed study,
IEEE Trans. Softw. Eng., 15, 4, 1989, pp. 413-426.

[27] TONELLA P., Evolutionary testing of classes, in ISSTA 04: Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing and analysis, ACM, 2004,
pp. 119-128.

[28] TRACEY N., A search-based automated test-data generation framework for safety-
critical software, PhD thesis, University of York, 2000.

Genetic Model based Testing: a Framework and a Case Study 227

[29] TRACEY N., CLARK J. A., MANDER K., Automated program flaw finding using sim-
ulated annealing, in ISSTA 98: Proceedings of the 1998 ACM SIGSOFT international
symposium on Software testing and analysis, 1998, pp. 73-81.

[30] TRACEY N., CLARK J. A.,, MANDER K., McDERMID J. A., An automated frame-

work for structural test-data generation, in ASE 98: Proceedings of the 13th IEEE
international conference on Automated software engineering, 1998, pp. 285-288.

[31] TRACEY N., CLARK J. A., McDERMID J. A., MANDER K., A search-based auto-
mated test-data generation framework for safety-critical systems, Springer-Verlag, New
York, 2002, pp. 174-213.

[32] WEGENER J., BARESEL A., STHAMER H., Evolutionary test environment for au-
tomatic structural testing, Information and Software Technology, 43, 14, 2001, pp. 841-
854.

[33] WHITLEY D., A genetic algorithm tutorial, Statistics and Computing, 4, 1994, pp.
65-85.

