
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 11, Number 3, 2008, 267–280

OPERAS for Social Insects: Formal
Modelling and Prototype Simulation

I. STAMATOPOULOU1, I. SAKELLARIOU2,
P. KEFALAS3, G. ELEFTHERAKIS3

1South East European Research Centre, Thessaloniki, Greece
E-mail: istamatopoulou@seerc.org

2Department of Applied Informatics, University of Macedonia
Thessaloniki, Greece

E-mail: iliass@uom.gr
3Department of Computer Science, CITY College, Thessaloniki, Greece

E-mail: {kefalas, eleftherakis}@city.academic.gr

Abstract. Social insect colonies present an interesting problem for formal

modelling due to characteristics such as self-organisation and dynamic structure.

In this paper, we present a formal model of a colony of Pharaoh ants using

OPERASXP , which combines two different formal methods, communicating X-

machines and population P systems as well as a framework that leads to a rapid

simulation prototype of such multi-agent systems, based on their formal models.

1. Introduction

Study of social insects colonies, such as ants and bees, reveal the need for computa-
tional models which are able to handle the highly dynamic structure of any biological
or nature-inspired artificial system that exhibits emergent behaviour. These systems
can be directly mapped to multi-agent systems (MAS) by considering each entity as
an agent, with its own behavioural rules, beliefs, goals, decision making mechanisms
and means of communication with the other entities and with the environment. The
overall behaviour of the system is merely the result of the agents’ individual actions,
the interactions among them and between them and the environment.

A key aspect that has to be dealt with at the modelling level is the dynamic nature
of such MAS and how their structure is constantly reconfigured. By structure we

268 I. Stamatopoulou et al.

imply (i) the number of the agents, and (ii) either their physical placement in space
or, more generally, the structure that is dictated by the communication channels
among them. Most modelling methodologies assume a fixed, static structure that
is not realistic since in a dynamic MAS, communication between two agents may
need to be established or ceased at any point and also new agents may appear in
the system while existing ones may be removed. Related to the above, an additional
issue that the dynamic nature of these systems raises has to do with distinguishing
between the modelling of the individual agents (behaviour) and the rules that govern
the structural adaptation of the collective MAS, the latter referring to the part of the
agent responsible for non-behavioural issues. A modelling method that allows such
a distinction, would greatly assist the modeller by breaking down the work into two
independent activities.

Part of the bio-informatics technology aims at developing in-silico models and
simulations that will complement in-vitro and in-vivo biological experiments. On the
other hand, knowledge gained from observation in these experiments could be used
to develop artificial systems in which simple components with simple interactions will
achieve a complex overall behaviour.

This paper presents how such a multi-agent system can be formally modelled using
OPERASXP and how this model may be used towards the simulation of the system
in NetLogo. In the next section the in-nest behaviour of the Pharaoh ants to be
modelled is briefly described. Section 3 briefly presents the OPERAS framework
and how it can be instantiated using communicating X-machines and population P
systems, leading to OPERASXP . Section 4 presents how the Pharaoh ants may be
modelled using the proposed method and in Section 5 we discuss the steps leading
from our formal model toward a rapid simulation in the NetLogo platform. Finally,
Section 6 concludes this paper.

2. Pharaoh Ants

Monomorium pharaonis, also called the Pharaoh ants, is a species of small ants
that originated from North Africa. Due to their small size and their rapid reproduction
cycle they are typically studied in-vitro. A typical colony of such ants comprises 100 to
5000 ants, containing a queen, a number of workers, pupae and some brood, however
a number of about 100 to 200 ants is adequate to study their behaviour.

The ants spend much of their time doing nothing, thus staying inactive. An ant
may become active if it becomes hungry or if it is being recruited to forage by another
ant. Such interactions between ants happen within the nest and it is their behaviour
inside there we attempt to model.

The assumptions that are made in this study are the following: (i) the colony is
situated in a rectangular environment and only consists of workers; (ii) the ants are
either inactive or hungry, moving around in search for food; (iii) when two ants meet
they might share food, if one is hungry and the other has food supplies; and (iv) the
ants go outside to forage when they are hungry, no food source is identified inside the
nest and a pheromone trail leading to an exit of the nest is discovered, (v) the laying

OPERAS for Social Insects 269

of pheromone is a behaviour of the foraging ants that return back to the nest carrying
food and is therefore not explicitly modelled.

Though this is a fairly simple case study, it is very realistic and of interest for
various reasons. It shows a combination of independent behaviours of the ants as well
as synchronised behaviour, when two ants come across to exchange food. It also has an
important degree of repetitiveness using the same type of ant in a number of instances
but also with slight variations between them (through the food distribution across
the ant colony, their different positions in the environment and the differences in the
individuals’ hunger thresholds etc.). Finally, it exhibits ant colony self-organisation
aspects.

From a modelling perspective, there are several interesting properties of the system
that are challenging. Firstly, the individual behaviour of the ants must be modelled
also enabling them to perceive their environment. The number of ants is not static,
since new ants may enter the nest and some leave or die of hunger, but neither is their
communication network, as pairs of ants communicate under particular conditions.
Overall, the structural configuration of the colony is highly dynamic and constantly
changes over time.

3. The OPERAS Framework

According to the OPERAS framework [15], when modelling a MAS, one should
specify a number of agents, their types and abilities, the environment in which they
operate, the stimuli that can be perceived by the agents, the agents’ communication
network and the rules that govern the structural mutation of the overall system. From
this perspective, a Multi-Agent System model in its general form can be defined by
the tuple (O,P, E, R,A, S) containing:

• The set of reconfiguration rules, O, that define how the system structure adapts
by applying appropriate reconfiguration operators. The rules in O are of the
form condition ⇒ action where condition refers to the computational state
of agents and action involves the application of one or more operators that
create/remove a communication channel between agents or introduce/remove
an agent into/from the system.

• The set of the model’s percepts, P , is defined as the distributed union of the
sets of percepts of all participating agents.

• The environment’s model / initial configuration, E.

• The relation, R, describing the initial structure of the communication network.
It is defined as R : A × A with (Ai, Aj) ∈ R, Ai, Aj ∈ A, meaning that agent
Ai may communicate with agent Aj , and it changes during the computation so
as to depict the communication network at any one point.

• The set of participating agents, A = {A1, . . . An} where Ai is a particular agent
defined in terms of its individual behaviour and its local mechanism for structure
mutation.

270 I. Stamatopoulou et al.

• The set of type definitions of agents that may be present in the system, S =
{(Behaviourt, StructuralMutatort) | t being an agent type identifier}, where
Behaviourt is the part of the agent that deals with its individual behaviour
and StructuralMutatort is the local mechanism for structure reconfiguration;
each participating agent Ai of type t is a particular instance of a type of agent:
Ai = (Beht, StrMutt)i.

The general underlying idea is that an agent’s formal model consists of two parts,
its behaviour and its structural mutator. The behaviour of an agent can be modelled
by a formal method with its computation being driven by percepts from the environ-
ment. The structural mutator can be modelled by a set of reconfiguration rules which
given the computation states of agents can change the structure of the system. The
MAS structure is determined through the relation that defines the communication
between the agents. The set of participating agents are instances of agent types that
may participate in the system. This deals with the fact that an agent may be present
at one instance of the system but disappear at another or that a new agent comes
into play during the evolution of the MAS. This assumes that all agent types that
may participate in the system should be known in advance.

OPERASXP

There are several options for instantiating OPERAS into a concrete modelling
method, considering that for the modelling of each type of agent Sk, different methods
may be used to specify its behavioural part and its structure mutation mechanism.
We have long experimented with two formal methods, which are communicating X-
machines (CXMs) and population P systems (PPSs) with active cells.

X-machines, a state-based formal method introduced by Eilenberg [3], are consid-
ered suitable for the formal specification of a system’s components. More particularly,
stream X-machines were found to be well-suited for the modelling of reactive systems.
Since then, valuable findings using the X-machines as a formal notation for specifica-
tion, communication, verification and testing purposes have been reported [8, 4, 6].
An X-machine (XM) model consists of a number of states and also has a memory,
which accommodates mathematically defined data structures. The transitions be-
tween states are labelled by functions. In addition to having stand-alone X-machine
models, communication is feasible by redirecting the output of one machine’s function
to become input to a function of another machine. The system structure of communi-
cating X-machines is defined as the graph whose nodes are the components and edges
are the communication channels among them [1].

On the other hand, a population P system [2] is a collection of different types of
cells evolving according to specific rules and capable of exchanging biological/chemical
substances with their neighbouring cells. The rules specifying the behaviour of the
individual cells in a PPS are more commonly of the simple form of rewrite rules
which are typically not sufficient for describing the behaviour of the respective agent
a cell may represent. However, PPS provide a straightforward way for dealing with the
change of a system’s structure through division rules, for creating new cells, cell death

OPERAS for Social Insects 271

rules, for removing cells, and bond-making rules, for reconfiguring the communication
links among cells.

Ad hoc integration of these two methods [14, 9, 13] gave us some preliminary
results which led us to the current combined approach we take for OPERAS. It is
interesting to notice that none of the two formal methods by itself could successfully
(or at least intuitively) model a MAS [9, 14], however the OPERAS framework gives
the opportunity to combine them as best suited for either of the two modelling tasks.
In the following, we present an instance of OPERAS, named OPERASXP , that uses
CXMs and PPSs. Previous work on instantiating the OPERAS framework included
another version of this combined approach (OPERASXC [15]) as well as a version
that uses only PPSs [16].

For the following, we consider that the computation state of a CXM describing
the behaviour of an agent is a 3-tuple Q × M × Φ representing (i) the state qi the
CXM is in, (ii) its current memory mi, and (iii) the last function ϕi that has been
applied (or ε, standing for ‘empty’, in the initial configuration). Though it may not be
customary to include the last applied function as part of the computation state, our
modelling experience has shown that knowing how an XM has come to a particular
state can at times be valuable information. An abstract example of an OPERASXP

model consisting of two agents is depicted in Fig. 1.

Fig. 1. An abstract example of an OPERASXP consisting of two agents.

A MAS in OPERASXP is defined as the tuple (O,P, E, R,A, S) where:

• the rules in O, responsible for structure reconfiguration, will be PPS cell division,
cell death and bond-making rules, whose applicability will depend on the compu-
tation state (q, m, ϕ) of a CXM, in order to add/remove agents/communication
links. These rules are of the form:

– Cell division: ((q,m, ϕ) → (q, m, ϕ) (q′, m′, ε))t meaning that when an
agent (CXM) of type t is in the computation state (q, m, ϕ), a new agent
may be introduced in the system initially in the computation state (q′,m′, ε)
(since for a new agent no function has been applied).

272 I. Stamatopoulou et al.

– Cell death: ((q, m, ϕ) → †)t meaning that when an agent (CXM) of type
t is in a particular computation state (q, m, ϕ), the agent is removed from
the system.

– Bond-making: (t1, (q1,m1, ϕ1) ; (q2,m2, ϕ2), t2) meaning that when two
agents of type t1 and t2 are in the computation states (q1,m1, ϕ1) and
(q2,m2, ϕ2), respectively, a communication link is created between them.

• P = PB ∪ PSM is the set of percepts of all participating agents, where PB =
Σ1 ∪ . . . ∪ Σk is the set of inputs perceived by the XM model of the behaviour
(subscript B) and PSM = (Q1 ×M1 × Φ1) ∪ . . . ∪ (Qk ×Mk × Φk) is the set of
objects (alphabet) in the PPS cells that deal with structural mutation (subscript
SM), k = |S| being the number of types of agents;

• E = {(q, m, ε)i | 1 ≤ i ≤ n, q ∈ Qi, m ∈ Mi} holding information about the
initial computation states of all the participating agents;

• R : CXM × CXM (CXM : the set of CXMs that model agent behaviour),
depicting the initial communication network between the ants. R is updated
throughout the computation by the bond-making rules;

• A = {A1, . . . , An} where Ai = (CXMt, Ct)i is a particular agent of type t
defined in terms of its individual behaviour (CXMt) and its local structural
mutator cell for controlling reconfiguration (Ct). The structural mutator cell is
of the form Ct = (wi, ot) where wi is the multi-set of objects it contains and
ot ⊂ O is the set of rules that correspond to the particular type of agent, t;

• S = {(XTt, Ct) | t being an agent type identifier}, where XTt is an XM type,
with no initial state and memory.

In this model, each structural mutator cell implicitly knows the computation state
(q, m, ϕ) of the underlying XM that models behaviour. Environmental input is di-
rected straight to the agent’s behavioural part. In each computation cycle an input
triggers a function of the behaviour CXM and the updated information about the
agent’s current computation state is updated in the structural mutator cell. A copy
of the object is placed in the environment for other agents in the local environment
to have access to it. Objects from the environment representing the computation
states of neighbouring agents are imported and finally, all the reconfiguration rules
in O of the type of the particular cell are being checked and if necessary applied.
Since the model follows the computation rules of a CXM system (triggered by the
behaviour component’s input, asynchronously for the different participating agents),
computation of the behaviour-driven version of OPERASXP is asynchronous.

4. OPERASXP Model of the Pharaoh Ants

For the problem at hand, one initially has to create the CXM model of an ant,
starting by identifying the number of states. There are five states which the ant can

OPERAS for Social Insects 273

be in: (a) Inactive, a non-hungry ant holding food, (b) Hungry, an ant holding a
food quantity that is below its hunger threshold, (c) Giving, a non-hungry ant that
perceives a hungry one and shares its food, (d) Taking, a hungry ant that perceives an
inactive ant and receives food from it, and (e) Dead, for an ant whose food quantity
has dropped to zero. Formally we write:

Q = {Inactive, Hungry,Giving, Taking, Dead}
The memory of the ant holds (a) its current position, (b) the amount of food,

it carries, (c) a number denoting the food quantity threshold, below which the ant
becomes hungry, (d) the food decay rate, a number denoting the quantity of food that
is consumed by the ant in each time unit, and (e) the food portion, i.e. the food
amount to be given by an ant that is carrying food to another which is hungry. We
choose to represent all of them as natural numbers.

The ant is modelled so that it accepts a tuple (pos, stimuli) as input to its func-
tions. The first element of the input represents the coordinates in which stimuli is
perceived whereas the second element is the description of the stimuli. The latter can
be pheromone or space, describing an empty position with or without pheromone, a
hungry, ha, or a non-hungry, nha, ant, or, finally, a number greater than zero repre-
senting the food quantity that is received by a non-hungry ant that shares its food.
Formally:

Σ = (N× N)× ({ha, nha, pheromone, space} ∪ N)
The transitions between states of the XM, as indicated by the state transition

diagram in Fig. 2, are the functions:

Φ = {search, followTrail, becomeHungry, ignoreHungryAnt,
meetInactiveAnt, meetHungryAnt, die, doNothing, giveFood,
noFoodToGive, takeEnoughFood, takeNotEnoughFood}.

Fig. 2. The state transition diagram of the ant.

Functions are triggered by an input and the contents of the memory, and they pro-
duce an output while updating the memory. For example, when in the Inactive state
an ant may: (a) perceive a hungry ant and if the food quantity the former is carrying

274 I. Stamatopoulou et al.

is enough, this will bring it to the Giving state (function meetHungryAnt) whereas if
it does not have enough food to give, it will ignore the hungry ant and remain in the
Inactive state (function noFoodToGive); (b) becomeHungry, if the amount of food it
carries drops below its hunger threshold, or (c) doNothing. The only thing that an
ant in the Giving state can do is to actually give the food to the hungry ant that has
been just perceived (function giveFood). Note, finally, that the action of eating food
is not explicitly modelled; rather, an ant consumes an amount of food equal to the
decay rate at every computation step (every time a function is applied).

Indicatively, the becomeHungry function is in formal notation as follows:

becomeHungry((pos, in), (myPos, food, fThreshold, fDecay, fPortion)) =
((got hungry), (myPos, food− fDecay, fThreshold, fDecay, fPortion))
if food− fDecay ≤ fThreshold

CXMs can communicate by exchanging messages. This is achieved by directing the
output of one CXM function to become input to another CXM’s function. In relation
to our model, two ants are in communication while sharing food. The inactive ant’s
function giveFood sends as output (¨ symbol in Fig. 2) the food amount it is willing
to share to be received as input (• symbol in Fig. 2) by the takeEnoughFood or
takeNotEnoughFood functions of the hungry ant.

The definition of the ant XM corresponds to the behavioural part of the agent
whereas the structural mutator part will be a PPS cell that holds and applies rules
to objects of the form (q, m, ϕ) (XM computation state). The remaining elements of
the OPERASXP definition are as follows:

The set O contains the rules that capture the ways in which the structure of the
colony mutates through the appearance and removal of agents or communication links.
Two kinds of PPS rules (cell division and bond-making) are required for the particular
scenario (in the following, the ‘ ’ represents an element value that is unimportant for
the rule).

When two ants, one of them hungry and the other one inactive, perceive each
other, the functions meetInactiveAnt and meetHungryAnt are applied, bringing
them to the Taking and Giving states, respectively. At this point a communication
link must be created and this is accomplished by the following bond-making rule:

(ant, (Giving, (pos1, , , ,),meetHungryAnt) ;
(Taking, (pos2, , , ,),meetInactiveAnt), ant)

if neighbours(pos1, pos2)

where ant denotes the type of the two agents.
The following cell death rule removes an ant from the system, when its food

quantity (2nd memory element) drops to zero:

((, (, food, , ,),) → †)ant, if food ≤ 0

The set of percepts P , since we are only dealing with one type of agent (ant), is
equal to the input set Σ of the XM.

The environment E needs to hold objects of the form (q, m, ϕ) (or (q, m, ε) in the
initial configuration) that need to be communicated among neighbouring cells through
appropriate PPS communication rules, so that each ant can “know” the computation

OPERAS for Social Insects 275

state of its neighbour(s) (as for example required by the bond-making rule presented
above).

The relation R, finally, holds pairs of ant instances that are in communication at
any one point, and is being accordingly updated by the bond-making rule at the end
of every computation cycle.

5. From OPERASXP to NetLogo Simulation

Apart from verifying the proposed model using formal methods, the presence of a
large number of XMs interacting based on spatial information dictated the need for
a simulation application that would animate the execution of the proposed model.
Such an animator would allow us to visualize the system’s operation as well as collect
statistical data concerning the colony’s behaviour in the nest. Implementing such an
animator requires a tool that supports simulation of a large number of autonomous
entities, the Pharaoh ants in our case, as well as sufficient facilities for building a
graphical representation of the environment and collecting experimental data. One
of the best representatives of such tools is NetLogo.

NetLogo [17] is a modelling environment targeted for simulation of multi-agent
systems that consist of a great number of agents. NetLogo offers a simple functional
language, in which behaviours of agents can be encoded, and a programming envi-
ronment that allows the easy creation of a GUI for a simulation supporting a great
number of parameters. The environment is an excellent tool for rapid prototyping
and initial testing of multi-agent systems as well as an excellent animation tool for
the modelled system.

There are two types of agents in NetLogo: static agents that are called patches
and are components of a grid on which agents that are able to move, called turtles,
“live” and interact. The former allow the modelling of environmental properties in a
simulation, such as the existence of pheromone in a specific nest position. The latter
can be used to model fully capable agents such as, in our case, the ants. The program-
ming language allows the specification of the behaviour of each patch and turtle, and
of the control of the execution. Moreover each turtle can have its own set of variables,
i.e. can carry its own state. The latter greatly facilitated the implementation of the
nest’s simulation, since each ant (turtle) in the simulation maintained its own XM
memory structure and information about its state. Monitoring and execution of the
agents is controlled by an entity called observer that “asks” each agent to perform a
specific computational task.

As stated, the motivation behind building the NetLogo simulation was to test
the proposed OPERASXP model for the Pharaoh ants with the additional aim of
performing a number of experiments to investigate the colony’s behaviour in a nest
that contains a large number of ants. One choice would be to build a completely
ad hoc model of the ants, based on a subjective interpretation of the functions and
transitions as they are described in the XM model. However, since XM models can
be defined using the X-machine Description Language (XMDL), a standard notation
that allows the representation of all the elements of the construct tuple of an XM [7],
we have chosen to implement an XM meta-interpreter that will animate the specified

276 I. Stamatopoulou et al.

XM model from a NetLogo representation of the XMDL specification. So that the
above is better illustrated, consider the following XM function (defined in XMDL):

#fun become_hungry ((?p, ?in), (?pos, ?f, ?ft, ?fdr, ?fp)) =

if ?nf =< ?ft then ((got_hungry), (?pos, ?nf, ?ft, ?fdr, ?fp))

where ?nf <- ?f - ?fdr.

In our simulation the above is translated into the following NetLogo function:

to-report become_hungry [px? py? in?]

let nf? f? - fdr?

ifelse nf? <= ft?

[report(list true "got_hungry" (list xcor ycor nf? ft? fdr? fp?))]

[report(list false)]

end

The functions are executed by the meta-interpreter which continuously executes
the following loop:

1. Execute Applicable Dynamic Reconfiguration Rules

2. Ask each ant to:

2.a Determine its input based on status of its neighbouring positions.

2.b Determine the applicable function based on input and

state of the ant.

2.c Apply changes to its memory and state specified by the

selected function of step 2.b.

Implementation of the structure reconfiguration rules is rather straightforward in
NetLogo, given that the observer “controls” the execution of agents and has access
to all their internal variables, i.e. a complete view of the state of computation, which
is necessary in order to decide which of the rules are triggered.

For example, when an ant is in the state “dead”, it must be removed from the
system, according to the corresponding reconfiguration rule. This is implemented in
the following line of code:

ask ants with [state = "dead"] [die]

In the code above, die is a NetLogo keyword that removes a turtle from the
simulation environment. Bond-making rules are slightly more complex. A list of all
possible communication-partners (global variable) is created by the select-hungry-ant

procedure executed by each inactive ant, and among these some are selected for
applying the bonding (thus representing the communication relation R). A code
fragment is shown below (the full code further contains a number of checks that were
necessary in such a dynamic model).

ask ants with [state = "inactive"] [select-hungry-ant]

foreach communication-partners [

let ha first ?

let nha item 1 ?

OPERAS for Social Insects 277

if state-of ha = "taking" and state-of nha = "giving"

[ask ha [set pref-input? (list xcor-of nha ycor-of nha mfp?)]

ask nha [set pref-input? (list xcor-of ha ycor-of ha mfp?)]]

if state-of ha = "taking" and state-of nha != "giving"

[ask ha [set pref-input? (list xcor-of nha ycor-of nha 0)]]]

Fig. 3. A screen-shot of the simulator environment in NetLogo.

Finally, the simulator includes a graphical interface through which experiment
parameters can be set and values describing the state of the modelled nest can be
monitored. Figure 3 shows a screen-shot of the implemented application. The ani-
mation of the nest is displayed on the window on the right side of the screen-shot,
where the lines represent pheromone paths. On the left hand side we can use the
controls to set values for various parameters affecting the course of the simulation.
Indicatively, some of the parameters we have used are the pheromone evaporation
rate, the probability of an outside ant carrying food to enter the nest, the probability
of an ant to choose a particular pheromone trail, the number of entrances and initial
trails etc. (note that although the pheromone laying behaviour has not been explicitly
modelled in OPERASXC , pheromone trails and foraging ants entering the nest have
been included in the NetLogo simulation). An extensive experimentation with the
values of the above parameters will be able to provide valuable feedback on the ways
they affect the cooperation of the ants and the life of the colony.

278 I. Stamatopoulou et al.

6. Conclusions and Further Work

In this paper we have presented how the OPERAS framework can be instan-
tiated into a concrete formal method using X-machines and population P systems
(OPERASXP), which allows the formal modelling of biologically inspired multi-agent
systems, facilitating at the same time the simulation of the system in NetLogo. We
demonstrated the applicability and intuitiveness of the proposed framework by for-
mally modelling the in-nest behaviour of a Pharaoh ant colony. Through the anima-
tion, it is possible for the developers to informally verify that the model corresponds to
the actual system under development. The animation can also be used to demonstrate
the model to the end-users (with no technical background) allowing them to identify
any misconceptions regarding the initial requirements offering informal validation of
the expected behaviour.

Moreover, the developed model provides a mathematical modelling formalism for
the system, which in turn allows X-machine specification to be model checked. Model
checking of X-machine models is supported by XmCTL, which enables the designer
to verify the developed model against XmCTL temporal logic formulas that express
the properties that the system should have [5]. Following the implementation of the
system, a complete test method also exists, which can generate all necessary test cases.
This allows the use of a formal testing strategy to test the implementation and prove
its correctness with respect to the X-machine model if certain assumptions in the
implementation hold [6] and it is thus possible to assure that all desired properties of
the system under development hold in the final product. Our approach also employs
a simulation, allowing the informal verification of complex systems in cases where
formal verification is impossible or impractical.

In terms of the animation, we considered the case of NetLogo as a suitable platform
for the development of prototype simulations and in-silico experimentation due to the
friendly environment and tools it provides. The NetLogo implementation was carried
out in a rather straightforward way, bearing in mind the formal X-machine models of
the individual ants and the reconfiguration rules. The formal model has driven the
creation of the simulation, by mapping the XM functions and the PPS reconfiguration
rules to NetLogo functions.

The implementation process itself has facilitated better understanding of the
model and has helped us correct some ambiguities that existed in the original model.
The easiness with which experiments can be parametrised can allow researchers to
make preliminary observations on fundamental issues of self-organisation and emer-
gence that could be used to complement in-vitro experiments. The NetLogo imple-
mentation revealed a framework under which similar simulations could be achieved
in other domains of biology-inspired multi-agent systems.

Future work concerning the NetLogo animator involves the automatic translation
of XMDL specifications in NetLogo code. Some steps have already been taken towards
this direction [12]. Given the current structure of the X-machine meta-interpreter and
the existing automatic XMDL to Prolog translation tools, this task is considered to
be more than feasible.

OPERAS for Social Insects 279

Acknowledgement. We would like to express our special thanks to Prof. Tudor
Bălănescu for his valuable contribution to the conception of the communicating X-
machines model. His initial work and the discussions we had ten years ago motivated
our work since then.

References

[1] BĂLĂNESCU T., COWLING A.J., GEORGESCU H., GHEORGHE M., HOLCOMBE
M., VERTAN C., Communicating Stream X-Machine Systems Are no more than X-
Machines, Journal of Universal Computer Science, 5, 9, 1999, pp. 494–507.

[2] BERNARDINI F., GHEORGHE M., Population P Systems, Journal of Universal Com-
puter Science, 10, 5, 2004, pp. 509–539.

[3] EILENBERG S., Automata, Languages and Machines, Academic Press, 1974.

[4] ELEFTHERAKIS G., Formal Verification of X-Machine Models: Towards Formal De-
velopment of Computer-based Systems, PhD thesis, Department of Computer Science,
University of Sheffield, 2003.

[5] ELEFTHERAKIS G., KEFALAS P., Formal Verification of Generalised State Machi-
nes, 12th Panhellenic Conference in Informatics, PCI’08, 2008; accepted.

[6] HOLCOMBE M., IPATE F., Correct Systems: Building a Business Process Solution,
Springer, London, 1998.

[7] KAPETI E., KEFALAS P., A Design Language and Tool for X-Machines Specification.
In: D.I. Fotiadis, S.D. Spyropoulos (Eds.) Advances in Informatics, World Scientific
Publishing Company, 2000, pp. 134–145.

[8] KEFALAS P., ELEFTHERAKIS G., KEHRIS E., Communicating X-Machines: A
Practical Approach for Formal and Modular Specification of Large Systems, Journal
of Information and Software Technology, 45, 5, 2003, pp. 269–280.

[9] KEFALAS P., STAMATOPOULOU I., GHEORGHE M., A Formal Modelling Frame-
work for Developing Multi-agent Systems with Dynamic Structure and Behaviour. In:
M. Pechoucek, P. Petta et al. (Eds.) Proceedings of the 4th Intern. Central and East-
ern European Conf. on Multi-Agent Systems (CEEMAS’05), Lecture Notes in artificial
Intelligence, 3690, pp. 122–131.

[10] PĂUN Gh., Computing with Membranes, Journal of Computer and System Sciences,
61, 1, 2000, pp. 108–143.

[11] PĂUN Gh., Membrane Computing. An Introduction, Springer–Verlag, Berlin, 2002.

[12] PENEVA K., KEFALAS P., Animating Formal Models of Biologically-Inspired Multi-
Agent Systems. In: Proceedings of the Balkan Conference in Informatics (BCI’05), 2005.

[13] STAMATOPOULOU I., KEFALAS P., GHEORGHE M., Specification of Reconfigurable
MAS: A Hybrid Formal Approach. In: G. Antoniou, G. Potamias et al. (Eds.) Pro-
ceedings of the 4th Hellenic Conference on AI (SETN’06), Lecture Notes in Artificial
Intelligence, 3955, 2006, pp. 592–595.

[14] STAMATOPOULOU I., KEFALAS P., GHEORGHE M., Modelling the Dynamic Struc-
ture of Biological State-based Systems, BioSystems, 87, 2–3, 2007, pp. 142–147.

280 I. Stamatopoulou et al.

[15] STAMATOPOULOU I., KEFALAS P., GHEORGHE M., OPERAS: a Formal Frame-
work for Multi-Agent Systems and its Application to Swarm-based Systems. In: A. Ar-
tikis, G. O’Hare et al. (Eds.) Proceedings of the 8th International Workshop on Engi-
neering Societies in the Agents World (ESAW’07), 2007, pp. 208–223.

[16] STAMATOPOULOU I., KEFALAS P., GHEORGHE M., OPERASCC : An Instance
of a Formal Framework for MAS Modelling based on Population P Systems. In: G.
Eleftherakis, P. Kefalas, G. Păun (Eds.) Proceedings of the 8th Workshop on Membrane
Computing (WMC’07), 2007, 551–566.

[17] WILENSKY U., Netlogo, http://ccl.northwestern.edu/netlogo. Center for Con-
nected Learning and Computer-based Modelling. Northwestern University, Evanston,
IL, 1999.

