
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 12, Number 2, 2009, 125–137

Using Finite-State Methods for
Getting Infinite Languages: A Preview

Gemma BEL-ENGUIX, Maria Dolores JIMÉNEZ-LÓPEZ,
Carlos MARTÍN-VIDE

Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tarraco, 1, 43005 Tarragona, Spain
E-mail: {gemma.bel,mariadolores.jimenez,carlos.martin}@urv.cat

Abstract. In this paper, a new/alternative approach to language repre-

sentation is presented. In our model, languages are formed by interactions of a

finite number of grammars each of them generating just a finite language. We

consider languages as infinite objects which emerge from interactions of ‘smaller’

finite language generators. The approach we introduce here can build a bridge

between two opposite views in present-day linguistics –one that regards natural

languages as infinite objects, and the second one that regards them as finite

objects. The basic notion we used here is called a colony. Colonies as well-

formalized language generating devices were proposed in [33]. Components of

a colony are regular grammars generating finite languages and operating on a

shared string of symbols. The aim of this contribution is to connect both colonies

and the philosophy behind them with the opposition between two conceptions of

natural language: the work in theoretical linguistics, where many scholars agree

that the set of sentences in a human language must be denumerably infinite,

and the work in corpus-based computational linguistics, where the focus is often

on language as a finite set. We intend to show that it is possible to formally

reconcile these two so apparently different conceptions of natural language.

1. Introduction

In the traditional theory of formal languages, a language is considered as a possi-
ble infinite object generated by a finite number of rules of the corresponding formal



126 G. Bel-Enguix, M. D. Jiménez-López, C. Mart́ın-Vide

grammar(s). In this contribution, an alternative approach to language representa-
tion is presented, where languages are formed by interactions of a finite number of
grammars each of them generating just a finite language.

By considering languages as infinite objects that emerge from interactions of
‘smaller’ finite languages generators, the approach introduced here can build a bridge
between two opposite views in present-day linguistics –one that regards natural lan-
guages as infinite objects, and another that regards them as finite objects. This opposi-
tion between two conceptions of natural language roughly coincides, respectively, with
the work in theoretical linguistics, where many scholars agree that the set of sentences
in a human language must be denumerably infinite, and the work in corpus-based
computational linguistics, where the focus is often on language as a finite set. We in-
tend to show that it is possible to formally reconcile these two so apparently different
conceptions of natural language and that they are not incompatible.

The basic notion used for the formal definition of the above-mentioned type of
generative device is called a colony. Colonies as well-formalized language generating
devices have been proposed in [33], and developed during the nineties in several
directions in a lot of papers, e.g. [35], [48], [59], [44], [34], [58], [14].

In the last decade, computational models have become mostly bio-inspired. In the
same way, the basic concept of colony, that is taken first from nature, has been de-
veloped by means of several bio-inspired computing theories, giving rise to membrane
systems [49], tissue P systems [45] or NEPs [9]. Despite the differences, the main idea
of colonies remains in these models: interaction, collaboration, emergence. The most
relevant contribution of bio-inspired models to the basic formalization seems to be
the concept of evolution in the configuration and definition of the components of the
system during the computation.

This paper takes as starting point the primary theory of colonies. This model
provides a simple and consistent basis for our purpose: to approach the issue of
the interplay between language and computation. The aim of this contribution is
to connect both colonies and the philosophy behind them with the above-mentioned
linguistic problems.

2. Natural Languages: Finite or Infinite?

The question whether the grammatical sentences of natural languages form reg-
ular, context-free, context-sensitive or recursively enumerable sets has been subject
to much discussion since it was posed by Chomsky in 1957. There seems to be little
agreement among linguists concerned with the position of natural languages.

The current debate on the complexity of natural language has focused on find-
ing adequate models of certain phenomena (embedding, reduplication, cross-serial
dependencies) and investigating their formal properties. This approach makes it pos-
sible to distinguish between constructions requiring at least the expressive power of a
context-free grammar and those which can be modelled by lower-level methods.

Although Chomsky attempted to demonstrate the inadequacy of finite-state de-
vices for natural languages, several linguists have advocated their use.



Using Finite-State Methods for Infinite Languages 127

We can briefly review these two positions by formulating the following question:
Are natural languages finite or infinite? In order to answer such a question, we have
to start by establishing a distinction between:

1. those that think that natural languages are finite (vs. those that believe that
they are infinite.)

2. those that think that finite-state devices are adequate to characterize natural
languages.

Notice that the above positions constitute two ways of understanding the idea
of finiteness, this is: natural languages as finite objects vs. adequacy of finite-state
devices for natural languages. In the remain part of this section we will review these
two positions.

2.1. Finite versus Infinite

According to Savitch [54], there are clear senses in which natural languages are
finite. Among them, the author enumerates the following ones:

1. it is generally assumed that human brains and hence linguistic processing ability
is finite;

2. the available data does not in any obvious way support the hypothesis that
natural language is infinite, rather than simply a large finite set;

3. at any point in time, an individual, or the entire community of human beings,
will have experienced only a finite number of sentences. At no point in history
will scientists be able to point to any actual pool explicitly containing an infinite
number of sentences.

Despite those apparently irrefutable facts, linguists treat natural languages as
infinite sets, at least when studying syntax. In this respect we can refer to Chomsky’s
words:

“In general it is assumed that natural languages are infinite in order to
simplify their description. If a grammar does not have recursive devices,
it will be prohibitively complex. If it has recursive devices of any type, it
will produce an infinite number of sentences” [10]

“Structurally, human language is a system with recursive structure-
dependent rules, operating on sequences organized in a hierarchy of phrases
to generate a countable infinity of sentences” [11]

2.2. Recognizable by Finite-State Machines

In what regards to the mechanism used, we can see that, in general, linguists agree
that syntax of a natural language cannot be described by a finite-state device or even



128 G. Bel-Enguix, M. D. Jiménez-López, C. Mart́ın-Vide

a context-free grammar. The frequently postulated need for very powerful tools is
motivated by different kinds of recursion and embedding. Indeed, in order to generate
an appropriate structure for those facts a formalism having the generative capacity of
context-free grammar is required. Nevertheless, it seems that there are many subsets
of natural language that can be correctly described by very simple means, this is, that
can be handled by less powerful devices. Examples of those sublanguages could be
names and titles, addresses, prices, dates, etc. For some of those kinds of expressions,
a finite-state grammar may be more appropriate and easier to construct than an
ordinary phrase structure grammar.

Taking into account the above-mentioned facts, finite-state devices, in one form
or another, have been used for the description of natural language since the early
1950s. But, after Chomsky’s condemnation of the adequacy of finite-state devices for
describing sentence structures, they virtually disappear from theoretical linguistics
throughout the seventies and eighties, and they just reappear on the scene again
thanks to C. Douglas Jonhson’s demonstration that it only takes a finite-state machine
to model a phonological rule –instead of the used context-sensitive rewrite rules–, and
to Kaplan and Kay paper in which the same conclusion was reached [19].

The argument that makes that many linguists and computational linguists came
to believe that finite-state devices were of little or no interest was the following Chom-
sky’s assertion:

“Any attempt to construct a finite-state grammar for English finds
difficulties and complications. [...] Therefore, it seems quite clear that no
theory for the linguistic structure based exclusively on Markov models, or
models of similar nature, will be able of explaining or giving information
of English speakers ability of producing and understanding new sentences.
[...] A finite-state grammar is the simplest type of grammar that with a
finite number of mechanisms can generate an infinite number of sentences.
A so limited linguistic theory is not adequate; we are forced, therefore, to
look for a more powerful type of grammar.” [10]

It may be true that complete and accurate natural language syntactic and semantic
dependencies lie beyond the power of finite-state description, but work in the last
years has identified a number of important problems for which very efficient and
effective finite-state solutions can be found. It seems that finite-state descriptions can
provide an approximation to the proper grammatical description of a language, an
approximation that is often good enough for practical purposes.

Following the idea of the utility of finite-state devices in natural language –and
taking into account the wide use of those devices in many areas of computer science–
there has been a resurgence of the use of finite-state techniques in many aspects of
computational linguistics, from the construction of lexical analyzers and the compila-
tion of morphological and phonological rules to speech processing. The use of finite-
state devices in many areas of computational linguistics can be justified by linguistic
and computational arguments. Linguistically finite-state devices are convenient since
they allow to describe easily most of the relevant local phenomena encountered in
the empirical study of language. From the computational point of view, the use of



Using Finite-State Methods for Infinite Languages 129

finite-state devices is mainly motivated by considerations of time and space efficiency.
Among the applications of finite-state devices in natural language processing, we can
refer to the following ones [52, 64]:

1. Dictionary Encoding. There has been a growing interest in using finite-state
devices for storing and accessing natural languages dictionaries [2, 42].

2. Morphology. Morphological analysers for various languages including Dutch,
English, French, German, Italian, Portuguese, Spanish, etc. have been devel-
oped. It seems that morphological analysis is inherently finite-state in character
and finite-state solutions for this problem are complete and efficient [5, 6, 28, 7].

3. Part-of-Speech Disambiguation (Tagging). The general purpose of a part-of-
speech tagger is to associate each word in a text with its morphosyntactic cat-
egory. The process consists in three steps: (1) tokenization: break a text into
tokens; (2) lexical lookup: provide all potential tags of each token; (3) disam-
biguation: assign to each token a single tag [57, 51].

4. Parsing. Finite-state parsing is an extension of finite-state devices to the level
of phrases and sentences [1, 15, 41, 50].

5. Information Extraction. This problem requires documents and passages be iden-
tified that are likely to contain information relevant to a given user’s needs.
Full-blown syntactic and semantic analyses of documents would certainly help
to solve this problem. But such analyses may provide much more information
than this task actually requires. A finite-state solution has been constructed that
is extremely efficient compared to more powerful but more complex extraction
systems and also has very favourable recall and precision scores [39, 40, 3].

So, in general, it seems that there are regular subsets of natural language for
which finite-state description is not only feasible but more appropriate and easier
to construct than the equivalent phrase-structure grammar. If the language to be
described is in fact regular, there many be a significant advantage in describing it by
means of a regular grammar instead of using a more powerful grammar formalism.

Summing up, it seems that although regular grammars can cover only limited
subsets of a natural language, there could be a practical advantage in describing such
sublanguages by means of regular expressions rather than by some more powerful
formalisms.

In this section, we have reviewed two different positions about the finiteness or
infiniteness of natural languages:

1. Firstly, we have referred to two ways of regarding natural languages: as finite
or infinite objects.

2. Secondly, we have presented two ideas of how to describe natural languages: on
the one hand, we have seen that there are scholars that defend that finite-state
devices could be adequate for describing natural languages; on the other hand,
we find those that deny the adequacy of such finite-state devices and postulate
the necessity of more powerful models in order to well describe natural language.



130 G. Bel-Enguix, M. D. Jiménez-López, C. Mart́ın-Vide

If we assume now that natural languages are infinite objects –this seems to be the
more accepted idea, in spite of the reasons adduced on the contrary–, the question
is: Can different ways of describing natural language –with finite-state devices or
more powerful mechanisms– be considered two opposite and irreconcilable views in
present-day linguistics? We think that it is not possible to regard those two positions
as a hard debate about the finiteness or infiniteness of natural languages. The point
is not that some authors think that natural languages are infinite while others think
that they are finite. Rather than a debate, what we have here are just two different
ways of handling natural languages: either by finite-state devices –the way chosen
by those who work on computational linguistics– or by more powerful devices –the
way chosen by those who work on theoretical linguistics. Therefore, we cannot talk
about two irreconcilable views, because these two ways of describing natural language
corresponds to two ways of doing linguistics, to two ways of approaching natural
languages –either from a theoretical or from a practical point of view.

3. Colonies: A Finite-State Device for the Emergence
of Infinite Languages

The above section has shown that we can afford natural languages either from a
theoretical point of view or from a practical point of view. Depending on our interest,
we will defend the adequacy or not adequacy of finite-state devices to model natural
language. Here, we propose colonies as a model that allow us to defend the infiniteness
of natural languages while treating them with finite-state devices. Therefore, colonies
can be regarded as a model that may formally reconcile these two so apparently
different conceptions of natural language, showing that they are not incompatible,
but that they can even be simultaneously defended in the same model.

3.1. Colonies: Formal Definition

Colonies as well-formalized language generating devices have been proposed in
[33], and developed during the nineties in several directions in many papers.

Colonies can be thought of as grammatical models of multi-agent systems moti-
vated by Brooks’ subsumption architectures [8]. They describe language classes in
terms of behaviour of collections of very simple, purely reactive, situated agents with
emergent behaviour. Roughly, a colony consists of a finite number of simple modules
(regular grammars) which generate finite languages and operate on a shared string of
symbols –the environment of the colony– without any explicitly predefined strategy
of cooperation. Each component has its own reactive behaviour which consists in: 1)
sensing some aspects of the context and 2) performing elementary tasks in it in order
to achieve some local changes. The environment is quite passive, its state changes
only as result of acts agents perform on it. Because of the lack of any predefined strat-
egy of cooperation, each component participates in the rewriting of current strings
whenever it can participate in it. The behaviour of a colony –this is, the language– is
defined as the set of all the strings which can be generated by the colony from a given



Using Finite-State Methods for Infinite Languages 131

starting string. In what follows we introduce the formal definition of a colony. For
formal results and new variants on this area we refer to [29, 30, 31, 32, 12, 43, 44, 4].

Definition 1. A colony C is a 3-tuple:

C = (R, V, T )

where

(i) R = {Ri|1 ≤ i ≤ n} is a finite set of regular grammars Ri = (Ni, Ti, Pi, Si)
producing finite languages L(Ri) = Fi for each i. Ri will be referred to as a
component of C.

(ii) V =
⋃n

i=1(Ti ∪Ni) is the alphabet of the colony.

(iii) T ⊆ V is the terminal alphabet of the colony.

We note that terminal symbols of one grammar can occur as nonterminals symbols
of another grammar.

Components Ri ∈ R (1 ≤ i ≤ n) of a colony C are regular grammars (as known in
the traditional theory of formal grammars and languages) generating finite languages
and operating on a shared string of symbols –the environment of the colony– without
any explicitly predefined strategy of cooperation of the components.

An environment of a colony is formed by strings of symbols from V . Strings
are modified only by sequential activities of components of a colony. Because of the
lack of any predefined strategy of cooperation between components, each component
participates in the rewriting of the current string whenever its start symbol is present
in the actual string. Conflicts are solved non-deterministically, as it is usual in the
classical theory of formal grammars.

The activity of components in a colony is realized by string transformation on a
common tape. Elementary changes of strings are determined by a basic derivation
step:

Definition 2. For x, y ∈ V ∗ we define x =⇒ y iff

x = x1Six2, y = x1zx2, where z ∈ Fi for some i, 1 ≤ i ≤ n.

The behaviour of a colony is defined as the set of all strings which can be gener-
ated by the colony from a given starting string. A terminal symbol of one component
can occur as a non-terminal symbol of another one, so that the possibility of co-
operation of components of the colony allows to generate substantially more than
finite languages. The global behaviour of the whole colony emerges from the strictly
individual behaviours of components.

Definition 3. The language determined by a colony C starting with the word
w0 ∈ V ∗ is given by:

L(C, w0) = {v|wo =⇒∗ v, v ∈ T ∗}.



132 G. Bel-Enguix, M. D. Jiménez-López, C. Mart́ın-Vide

The language LC ⊆ T ∗ generated by a colony C is a subset of all strings over the
terminal alphabet T which are generated by the components from R of the colony C
starting from a given string.

A graphical view of a colony is presented in Fig. 1.

P1 P2
. . . Pn

CONTEXT

- - -

? ? ?

Fig. 1. A colony.

3.2. Colonies as a Model for Natural Language

A colony, as proposed originally, captures some formal aspects of systems of finite
number of autonomous components capable to perform very simple reactive com-
puting tasks each. The behaviour of the colony really emerges from interactions of
its components with their symbolic environment and can considerably surpass the
individual behaviours of its components.

Colonies offer a formal framework for description and study of the emergence of
complicated behaviours from simple ones of their purely reactive components.

With colonies, we can generate natural language by the interaction of a finite
number of finite-state devices that generate finite languages. If we use colonies we
do not need to consider a priori that natural languages are infinite, we just need to
construct different finite-state grammars each generating a finite language. The result
of such interaction will be what we are waiting for: infiniteness. Notice that in order
to get infinite languages we use finite means. The infinite emerges.

In computational linguistics, finite-state devices have been used for phonology,
morphology, lexicon and syntax of natural languages. The advantages of approaching
such parts of natural languages with finite-state devices have been demonstrated.
So, from a practical point of view, finite-state descriptions of natural languages have
revealed as adequate. The problems of using such devices arise when we consider
natural languages as a whole, pointing our attention on the complexity of such an
object and on its infinite nature. Here is where colonies can enter to reconcile these two
positions: for each part of a natural language, we define a finite-state grammar that
generates a finite language –defending, as in computational linguistics, the adequacy
of such mechanisms. The result of the interaction of those finite-state grammars will
be infinite -as defended in theoretical linguistics.

Specifically, what we propose is to define finite-state devices for: morphology,
phonology, syntax, lexicon and any other required module in language. If we put
those finite-state devices in a colony, they will interact in order to generate natural
language. The result of the interaction will be, not a regular language, but a language
that is context-free or more.

In [33] a formal theoretic result is proved according to which an arbitrary context-
free formal language can be generated by a corresponding colony, and an arbitrary



Using Finite-State Methods for Infinite Languages 133

formal language generated by a colony is context-free. In other words, the family of
languages generated by colonies is identical to the family of all context-free languages.
Using this statement, and taking into account the fact that the family of context-
free languages is infinite, we can say that by putting finite-state devices in a colony
we get, not finite languages, but infinite languages thanks to the interaction in the
colony. The idea is clear: if we have finite-states devices that interact in a colony, the
infinite emerges. In this way we put together the apparent different ideas defended
in Computational and Theoretical Linguistics.

MORPH PHON . . . SY N

NATURAL LANGUAGE

- - -

? ? ?

Fig. 2. A colony for Natural Language.

4. Final Remarks

Natural languages can be described as a number of modules that interact in a
nonsimple way. Understanding and generation needs cooperative phonological, mor-
phological, lexical, syntactic, pragmatic, semantic... modules. In general, formal and
computational approaches to natural language demand distributed models in order
to explain the complexity of linguistic structures as the result of the interaction of
a number of independent but cooperative modules. Colonies offer a modular theory
where the various dimensions of linguistic representation are arranged in a distributed
framework and where the language of the system is the result of the interaction of
those independent cooperative modules.

The main advantage of colonies is their generative power, the class of languages
describable by colonies that make use of strictly regular components is beyond the
set describable in terms of individual regular grammars.

According to [63], the attractiveness of finite-state technology for natural language
processing stems from four sources:

1. modularity of the design, due to the closure properties of regular languages and
relations

2. compact representation that is achieved through minimization

3. efficiency, which is a result of linear recognition time with finite-state devices

4. reversibility, resulting from the declarative nature of finite-state devices

In the field of computational linguistics, and because of their mathematical and
computational simplicity (in terms of time and space efficiency), regular languages and



134 G. Bel-Enguix, M. D. Jiménez-López, C. Mart́ın-Vide

finite-state automata are applied to many issues related to natural language process-
ing. However, in theoretical linguistics, we see that one of the most persistent issues
has been the one of determining where natural languages are located on ‘Chomsky
hierarchy’, and, in general, the answer has been that natural language must be, at
least, context-free. So, from a theoretical point of view, regular languages seem not
to be adequate to characterize a natural language.

In this paper, we have proposed colonies as a tool that may allow us to generate
infinite languages by only using regular grammars. This formal framework increases
the power of regular grammars thanks to interaction. What is important here is the
fact that although the generative power of colonies goes beyond the regular family
of languages, the derivation process is done in a regular (finite-state) manner. So,
colonies may reveal as a device able of conjoining the simplicity of finite-state machines
with a stronger generative power able to account for the infiniteness (context-free or
more) of natural languages.

Ideas introduced in this paper still seminal, but we think that colonies can formally
reconcile the two different conceptions of natural language: the work in theoretical
linguistics, where many scholars agree that the set of sentences in a human language
must be denumerably infinite, and the work in corpus-based computational linguistics,
where the focus is on language as a finite set.

References

[1] AÏT-MOKHTAR S., CHANOD J.P., Incremental Finite-State Parsing, Proceedings of
ANLP’97, Washington, 1997.

[2] APPEL A.W., JACOBSON G., The World’s fastest scrabble program, Communications
of the ACM, 31(5), 1986, pp. 572–578.

[3] APPELT D., HOBBS J., BEAR J., ISRAEL D., TYSON M., FASTUS: A Finite-
State Processor for Information Extraction from Real-World Text, International Joint
Conference on Artificial Intelligence, 1993, pp. 1172–1178.

[4] BANÍK I., Colonies with Position, Computers and Artificial Intelligence, 15, 1996,
pp. 141–154.

[5] BEESLEY K.R., Arabic Morphological Analysis on the Internet, Proceedings of the
International Conference and Exhibition on Multi-lingual Computing (Arabic and En-
glish), ICEMCO-98, 1998.

[6] BEESLEY K.R., KARTTUNEN L., Finite-State Non-Concatenative Morphotactics, in
Karttunen L., Eisner J. & Theriault A. (eds.), SIGPHON-2000. Proceedings of the Fifth
Workshop of the ACL Special Interest Group in Computational Phonology, Luxembourg,
2000, pp. 1–12.

[7] BEESLEY K., KARTTUNEN L., Finite State Morphology, CSLI Publications, Stand-
ford, 2003.

[8] BROOKS R.A., Elephants don’t play chess, Robotics and Autonomous Systems, 6,
1990, pp. 3–15.

[9] CASTELLANOS J., MARTÍN-VIDE C., MITRANA V., SEMPERE J. M., Networks
of evolutionary processors, Acta Informatica, 39, 2003, pp. 517–529.



Using Finite-State Methods for Infinite Languages 135

[10] CHOMSKY N., Syntactic Structures, Mouton, The Hague, 1957.

[11] CHOMSKY N., Rules and Representations, Blackwell, Oxford, 1980.

[12] DASSOW J., KELEMEN J., PĂUN G., On Parallelism in Colonies, Cybernetics and
Systems, 14, 1993, pp. 37–49.

[13] EJERHED E., Finite State Segmentation of Discourse into Clauses, in Kornai A. (ed.),
Extended Finite State Models of Language, Proceedings of the ECAI 96 Workshop, Cam-
bridge University Press, 1996.

[14] GAŠO J., Unreliable Colonies as Systems of Stochastic Grammars, Journal of Au-
tomata, Languages, and Combinatorics, 5, 2000.

[15] GREFENSTETTE G., Light Parsing as Finite-State Filtering, in Kornai A. (ed.), Ex-
tended Finite State Models of Language, Proceedings of the ECAI 96 Workshop, Cam-
bridge University Press, 1999.

[16] JOSHI A., A Parser from Antiquity: An Early Application of Finite State Transduc-
ers to Natural Language Parsing, in Kornai A. (ed.), Extended Finite State Models of
Language, Proceedings of the ECAI 96 Workshop, Cambridge University Press, 1999.

[17] KAPLAN R.M., Finite State Technology, http://cslu.cse.ogi.edu/HLTsurvey/

ch11node8.htlm

[18] KAPLAN R.M., KAY M., Finite-State Methods in Natural Language Processing: 1-
Motivation, http://www.stanford.edu/class/ling138/wk6/sld001.html

[19] KAPLAN R.M., KAY M., Regular Models of Phonological Rule Systems, Computational
Linguistics, 20:3, 1994, pp. 331–378.

[20] KARTTUNEN L., Directed Replacement, Proceedings of the 34th Annual Meeting of the
ACL, Santa Cruz, CA, 1996.

[21] KARTTUNEN L., Finite-State Constraints, Proceedings of the International Conference
on Current Issues in Computational Linguistics, University Saints Malaysia, Penang,
Malaysia, 1991, pp. 10–14.

[22] KARTTUNEN L., Finite-State Lexicon Compiler, Technical Report, ISTL-NLTT-1993-
04-02, Xerox Palo Alto Research Center, California, 1993.

[23] KARTTUNEN L., Constructing Lexical Transducers, Proceedings of the 15th Interna-
tional Conference on Computational Linguistics. Coling 94, Kyoto, Vol. I, 1994, pp. 406–
411.

[24] KARTTUNEN L., The Replace Operator, Proceedings of the 33rd Annual Meeting of
the Association for Computational Linguistics. ACL-95, Boston, 1995, pp. 16–24.

[25] KARTTUNEN L., Applications of Finite-State Transducers in Natural-Language Pro-
cessing, in Yu S. & Păun G. (eds.), Implementation and Application of Automata, LNCS
2088, Springer, Berlin, 2001, pp. 34–46.

[26] KARTTUNEN L., BEESLEY K.R., Two-Level Rule Compiler, Technical Report, ISTL-
92-2, Xerox Palo Alto Research Center, California, 1992.

[27] KARTTUNEN L., CHANOD J.P., GREFENSTETTE G., SCHILLER A., Regular Ex-
pressions for Language Engineering, Natural Language Engineering, Cambridge Uni-
versity Press, 1997, pp. 1–24.

[28] KARTTUNEN L., KAPLAN R.M., ZAENEN A., Two-Level Morphology with Compo-
sition, in Proceedings of Coling 92. International Conference on Computational Linguis-
tics, Nantes, Vol. 1, 1992, pp. 141–148.



136 G. Bel-Enguix, M. D. Jiménez-López, C. Mart́ın-Vide

[29] KELEMEN J. (ed.), Grammar Systems and Colonies, Computer Science Preprint no.
CS4-91, Faculty of Mathematics and Physics, Comenius University, Bratislava, 1991.

[30] KELEMEN J. (ed.), Grammar Systems and Colonies II, Computer Science Preprint no.
CS2-92, Faculty of Mathematics and Physics, Comenius University, Bratislava, 1992.

[31] KELEMEN J. (ed.), Grammar Systems and Colonies III, Computer Science Preprint
no. CS1-93, Faculty of Mathematics and Physics, Comenius University, Bratislava, 1993.

[32] KELEMEN J., Colonies – A Theory of Reactive Agents, in Kelemenová A. (ed.), Pro-
ceedings on the MFCS’98 Satellite Workshop on Grammar Systems, Silesian Univer-
sity, Faculty of Philosophy and Sciences, Institute of Computer Science, Opava, 1998,
pp. 7–38.

[33] KELEMEN J., KELEMENOVÁ A., A Grammar-Theoretic Treatment of Multiagent
Systems, Cybernetics and Systems, 23, 1992, pp. 621–633.

[34] KELEMENOVÁ A., Timing in colonies, in Păun G. & Salomaa A. (eds.) Grammatical
Models of Multi-Agent Systems, Gordon and Breach, London, 1999.

[35] KELEMENOVÁ A., CSUHAJ-VARJÚ E., Languages of Colonies, Theoretical Com-
puter Science, 134, 1994, pp. 119–130.

[36] KORNAI A., Natural Languages and the Chomsky Hierarchy, in King M. (ed.), Proceed-
ings of the 2nd European Conference of the Association for Computational Linguistics,
1985, pp. 1–7.

[37] KORNAI A., Language Models: Where are the Bottlenecks?, AISB Quarterly, 88, 1994,
pp. 36–40.

[38] KORNAI A., Extended Finite State Models of Language, Natural Language Engineering,
4, 1996, pp. 287–290.

[39] KOSKENNIEMI K., Finite-State Morphology and Information Retrieval, in Kornai A.
(ed.), Extended Finite State Models of Language, Proceedings of the ECAI 96 Workshop,
Cambridge University Press, 1999.

[40] KUSHMERICK N., Finite-State Approaches to web information extraction, Proceed-
ings of the 3rd Summer Convention on Information Extraction, Springer, Berlin, 2002,
pp. 77–91.

[41] LANGENDOEN T., LANGSAM Y., On the Design of Finite Transducers for Parsing
Phrase-Structure Languages, in Manaster-Ramer A. (ed.), Mathematics of Language,
John Benjamims, Amsterdam, 1987, pp. 191–235.

[42] LUCCHESI C.L., KOWALTOWSKI T., Applications of finite automata representing
large vocabularies, Software-Practice and Experience, 23(1), 1993, pp. 15–30.

[43] MARTÍN-VIDE C., PĂUN G., PM-colonies, Computers and Artificial Intelligence, 17,
1998, pp. 553–582.

[44] MARTÍN-VIDE C., PĂUN G., New Topics in Colonies Theory, Grammars, 1, 1999,
pp. 209–223.

[45] MARTÍN-VIDE C., PĂUN G., PAZOS J., RODRÍGUEZ-PATÓN A. (2002), Tissue P
Systems, Theoretical Computer Science, 296 (2), 2002, pp. 295–326.

[46] MOHRI M., Finite State Transducers in Language and Speech Processing, Computa-
tional Linguistics, vol. 23, no. 2, 1997, pp. 269–311.



Using Finite-State Methods for Infinite Languages 137

[47] OEHRLE D., Finite-State Methods, Binding, and Anaphora, in Kornai A. (ed.), Ex-
tended Finite State Models of Language, Proceedings of the ECAI 96 Workshop, Cam-
bridge University Press, 1999.

[48] PĂUN G., On the Generative Power of Colonies, Kybernetika, 31, 1995, pp. 83–97.

[49] PĂUN G., Computing with membranes, Journal of Computer and Systems Sciences,
61(1), 2000, pp. 108–143.

[50] ROCHE E., Finite-State Transducers: Parsing Free and Frozen Sentences, in Kornai A.
(ed.), Extended Finite State Models of Language, Proceedings of the ECAI 96 Workshop,
Cambridge University Press, 1999.

[51] ROCHE E., SCHABES Y., Deterministic Part-of-Speech Tagging with Finite State
Transducers, Computational Linguistics, vol. 21, 1995, pp. 227–253.

[52] ROCHE E., SHABES Y. (Eds.), Finite-State Language Processing, MIT Press, Cam-
bridge, 1997.

[53] ROOD C.M., Efficient Finite-State Approximation of Context Free Grammars, in Ko-
rnai A. (ed.), Extended Finite State Models of Language, Proceedings of the ECAI 96
Workshop, Cambridge University Press, 1999.

[54] SAVITCH W., Why It Might Pay to Assume That Languages Are Infinite, Annals of
Mathematics and Artificial Intelligence, 8 (1–2), 1993, pp. 17–25.

[55] SCHILLER A., Multilingual Finite-State Noun Phrase Extraction, in Kornai A. (ed.),
Extended Finite State Models of Language, Proceedings of the ECAI 96 Workshop, Cam-
bridge University Press, 1999.

[56] SKUT W., Finite Automata for Processing Word Order, in Kornai A. (ed.), Extended
Finite State Models of Language, Proceedings of the ECAI 96 Workshop, Cambridge
University Press, 1999.

[57] SKUT W., ULRICH S., HAMMERVOLD K., A Generic Finite State Compiler for
Tagging Rules, Machine Translation, vol. 18, Issue 3, 2003, pp. 239–250.

[58] SOSÍK P., Parallel Accepting Colonies and Neural Networks, in Păun G. & Salomaa A.
(eds.) Grammatical Models of Multi-Agent Systems, Gordon and Breach, London, 1999.

[59] SOSÍK P., ŠTÝBNAR L., Grammatical Inference of Colonies, in Păun G. & Salomaa
A. (eds.) New Trends in Formal Languages, Springer, Berlin, 1997.

[60] SRINIVAS B., Explanation-based Learning and Finite State Transducers: Applications
to Parsing Lexicalized Tree Adjoining Grammars, in Kornai A. (ed.), Extended Finite
State Models of Language, Proceedings of the ECAI 96 Workshop, Cambridge University
Press, 1999.

[61] VILAR J.M., VIDAL E., AMENGUAL J.C., Learning Extended Finite State Models for
Language Translation, in Kornai A. (ed.), Extended Finite State Models of Language,
Proceedings of the ECAI 96 Workshop, Cambridge University Press, 1999.

[62] WATSON B.W., Implementing and using finite automata toolkits, in Kornai A. (ed.),
Extended Finite State Models of Language, Proceedings of the ECAI 96 Workshop, Cam-
bridge University Press, 1999.

[63] WINTNER S., Finite-State Technology as a Programming Environment, in Gelbukh A.
(ed.), CICLing 2007, LNCS 4394, Springer, Berlin, 2007, pp. 97–106.

[64] YLI-JYRA A., KARTTUNEN L., KARHUMAKI J. (eds.), Finite State Methods and
Natural Language Processing, Springer, Berlin, 2006.


