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Abstract. Essentially, a Petri net controlled grammar is a context-free

grammar equipped with a Petri net and a function which maps transitions of

the net to rules of the grammar. The language consists of all terminal words

that can be obtained by applying of a sequence of productions which is the

image of an occurrence sequence of the Petri net under the function. We study

the generative power of such grammars on the type of the function which can

be a bijection or a coding or a weak coding and with respect to three types of

admitted sets of occurrence sequences. We show that the generative power does

not depend on the type of the function. Moreover, the restriction to occurrence

sequences, which transform the initial marking to a marking in a given finite set

of markings, leads to a more powerful class of grammars than the allowance of

all occurrence sequences. Furthermore, we present some new characterizations

of the family of matrix languages in terms of Petri net controlled grammars.

1. Introduction

It is a well-known fact that context-free grammars are not able to cover all phe-
nomena of natural and programming languages, and also with respect to other appli-
cation of sequential grammars they cannot describe all aspects. On the other hand,

∗This paper is an extended version of the paper presented at the Second International Workshop
on Non-classical Formal Languages in Linguistics, Tarragona, Spain, September 19-20, 2008 [5]. In
particular, we consider another definition for the set of final markings. In order to give the complete
information to the reader, the proofs of some statements of [5] are recalled.



192 J. Dassow, S. Turaev

context-sensitive grammars are powerful enough but have bad features with respect
to decidability problems which are undecidable or at least very hard. Therefore it
is a natural idea to introduce grammars which use context-free rules and have a de-
vice which controls the application of the rules. We refer to the monograph [3] for
a summary of this approach. The regularly controlled grammars are a well-known
class of such grammars; here a finite automaton is associated with a grammar and
the sequence of applied rules has to be accepted by the automaton.

In this paper we consider a generalization of regularly controlled grammars. In-
stead of a finite automaton we associate a Petri net with a context-free grammar and
require that the sequence of applied rules corresponds to an occurrence sequence of
the Petri net, i.e., to sequences of transitions which can be fired in succession. How-
ever, one has to decide what type of correspondence is used and what concept is taken
as an equivalent of acceptance. Since the sets of occurrence sequences form the lan-
guage of a Petri net, we choose the correspondence and the equivalent for acceptance
according to the variations which are used in the theory of Petri net languages.

Therefore as correspondence we choose a bijection (between transitions and rules)
or a coding (any transition is mapped to a rule) or a weak coding (any transition is
mapped to a rule or the empty word) which agree with the classical three variants of
Petri net languages (see e.g. [15], [6], [14]).

In the theory of Petri net languages two types of acceptance are considered: only
those occurrence sequences belonging to the languages which transform the initial
marking into a marking from a given finite set of markings or all occurrence sequences
are taken (independent of the obtained marking). If we use only the occurrence
sequence leading to a marking in a given finite set of markings we say that the Petri
net controlled grammar is of t-type; if we consider all occurrence sequences, then the
grammar is of r-type. We add a further type which can be considered as a complement
of the t-type. Obviously, if we choose a finite set M of markings and require that the
marking obtained after the application of the occurrence sequence is smaller than at
least one marking of M (the order is componentwise), then we can choose another
finite set M ′ of markings and require that the obtained marking belongs to M ′. The
complementary approach requires that the obtained marking is larger than at least
one marking of the given set M . The corresponding class of Petri net controlled
grammars is called of g-type.

Therefore we obtain nine classes of Petri net controlled grammars since we have
three different types of correspondence and three types of the set of admitted occur-
rence sequences. In this paper we investigate the generative power of these classes of
Petri net controlled languages. Thus the paper is an extension of [5] where not all
nine classes have been considered.

We mention that the paper is a continuation of the papers [2], [16] and [4], too,
where instead of arbitrary Petri nets only such Petri nets have been considered where
the places and transitions correspond in a one-to-one manner to nonterminals and
rules, respectively.

By the above remarks Petri net controlled grammars are motivated by reasons
inside the theory of formal grammars describing natural and programming languages.
However, there is also a motivation which comes from the modeling of automated
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manufacturing systems, metabolic pathways and related structures. An automated
manufacturing systems is generally a set of activities which interact with a set of
resources and result in a product. For modeling such systems Petri nets are very
often used (see e.g. [9] and [13]). However, Petri nets are only good tools for the
description of the communication among the components, of the process control and
of the behavioral properties of the systems; but they do not fit very well for the
manufacturing itself. Therefore a better model can be obtained by Petri net controlled
grammars. The grammar is able to cover the generating processes and these processes
are controlled by the Petri net. In this context the types of acceptance correspond to
no requirement, an upper and an lower bound for the size of some resources.

An analogous situation holds for the modeling of metabolic pathways (see e.g. [7]
and [1]).

The paper is organized as follows. In Section 2 we recall some concepts from the
theories of formal languages and Petri nets. In Section 3 we introduce our concept of
control of derivations in context-free grammars by Petri nets. Section 4 contains the
results on the influence of the labeling function on the generative power. In Section
5 we discuss the effect of different types of final markings on the generative power.

2. Preliminaries

We assume that the reader is familiar with the basic concepts of formal language
theory and Petri nets. In this section we only recall some notions and notation. For
details we refer to [8], [12], [15] and [11].

2.1. Grammars

Let Σ be an alphabet. A string over Σ is a sequence of symbols from the alphabet.
The empty string is denoted by λ which is of length 0. The set of all strings over the
alphabet Σ is denoted by Σ∗. A subset L of Σ∗ is called a language. If w = w1w2w3

for some w1, w2, w3 ∈ Σ∗, then w2 is called a substring of w. The length of a string w
is denoted by |w|, and the number of occurrences of a symbol a in a string w by |w|a.

A context-free grammar is a quadruple G = (V, Σ, S, R) where V and Σ are disjoint
finite sets of nonterminal and terminal symbols, respectively, S ∈ V is the start
symbol and a finite set R ⊆ V × (V ∪ Σ)∗ is a set of (production) rules. Usually, a
rule (A, x) is written as A → x. A rule of the form A → λ is called an erasing rule. A
string x ∈ (V ∪Σ)+ directly derives a string y ∈ (V ∪Σ)∗, written as x ⇒ y, iff there
is a rule r = A → α ∈ R such that x = x1Ax2 and y = x1αx2. The reflexive and
transitive closure of ⇒ is denoted by ⇒∗. A derivation using the sequence of rules
π = r1r2 · · · rn is denoted by π=⇒ or r1r2···rn=====⇒. The language generated by G is defined
by L(G) = {w ∈ Σ∗ | S ⇒∗ w}.

A matrix grammar is a quadruple G = (V , Σ, S, M) where V,Σ, S are defined as
for a context-free grammar, M is a finite set of matrices which are finite strings over
a set of context-free rules (or finite sequences of context-free rules). The language
generated by G is L(G) = {w ∈ Σ∗ | S π=⇒ w and π ∈ M∗}.
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A matrix grammar G is called without repetitions, if each rule r of G occurs in
M = {m1, m2, . . . ,mn} exactly once, i.e., |m1m2 · · ·mn|r = 1.

For each matrix grammar, by adding chain rules, one can construct an equivalent
matrix grammar without repetitions.

The families of languages generated by matrix grammars without erasing rules and
by matrix grammars with erasing rules are denoted by MAT and MATλ, respectively.

2.2. Petri Nets

A (place/transition) Petri net (PN) is a construct N = (P, T, F, ϕ) where P and
T are disjoint finite sets of places and transitions, respectively, F ⊆ (P ×T )∪ (T ×P )
is a set of directed arcs, ϕ : (P × T ) ∪ (T × P ) → {0, 1, 2, . . . } is a weight function,
where ϕ(x, y) = 0 for all (x, y) ∈ ((P × T ) ∪ (T × P ))− F .

A Petri net can be represented by a bipartite directed graph with the node set
P ∪ T where places are drawn as circles, transitions as boxes and arcs as arrows with
labels ϕ(p, t) or ϕ(t, p). If ϕ(p, t) = 1 or ϕ(t, p) = 1, the label is omitted.

A mapping µ : P → {0, 1, 2, . . .} is called a marking. For each place p ∈ P , µ(p)
gives the number of tokens in p. Graphically, tokens are drawn as small solid dots
inside circles. •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} are called the pre- and
post-sets of x ∈ P ∪T , respectively. The elements of •t (•p) are called the input places
(transitions) and the elements of t• (p•) are called the output places (transitions) of
t (p).

A transition t ∈ T is enabled by a marking µ iff µ(p) ≥ ϕ(p, t) for all p ∈ P . In
this case t can occur (fire). Its occurrence transforms the marking µ into the marking
µ′, written as µ

t−→ µ′, defined for each place p ∈ P by µ′(p) = µ(p)−ϕ(p, t) + ϕ(t, p).
A finite sequence t1t2 · · · tk of transitions is called an occurrence sequence enabled at
a marking µ if there are markings µ1, µ2, . . . , µk such that µ

t1−→ µ1
t2−→ . . .

tk−→ µk. In
short this sequence can be written as µ

t1t2···tk−−−−−→ µk or µ
ν−→ µk where ν = t1t2 · · · tk.

For each 1 ≤ i ≤ k, the marking µi is called reachable from the marking µ. The set
of all reachable markings of a Petri net N from a marking µ is denoted by R(N,µ).

A marked Petri net is a system N = (P, T, F, ϕ, ι) where (P, T, F, ϕ) is a Petri
net, ι is the initial marking. Let M be a set of markings, which will be called final
markings. An occurrence sequence ν of transitions is called successful for M if it
is enabled at the initial marking ι and finished at a final marking τ ∈ M . If M is
understood from the context, we say that ν is a successful occurrence sequence.

3. Petri Net Controlled Grammars and their Languages

We now introduce our concept of control.

Definition 1. A Petri net controlled grammar is a tuple G = (V,Σ, S, R, N, γ,M)
where V , Σ, S, R are defined as for a context-free grammar and N = (P, T, F, ϕ, ι) is
a (marked) Petri net, γ : T → R ∪ {λ} is a labeling function and M is a set of final
markings.
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Definition 2. The language generated by a Petri net controlled grammar G,
denoted by L(G), consists of all strings w ∈ Σ∗ such that there is a derivation
S

r1r2···rk=====⇒ w ∈ Σ∗ and an occurrence sequence ν = t1t2 · · · ts which is successful
for M such that r1r2 · · · rk = γ(t1t2 · · · ts).

Definition 2 uses the extended form of the labeling function γ : T ∗ → R∗; this
extension is done in the usual manner.

Obviously, if γ maps any transition to a rule, then k = s in Definition 2.

Example 1. Let G1 = ({S,A, B, C}, {a, b, c}, S,R, N1, γ1,M1) be a Petri net
controlled grammar where R = {S → ABC, A → aA, B → bB, C → cC, A → a,
B → b, C → c} and N1 is illustrated in Fig. ??. If M1 is the set of all reachable
markings, then G1 generates the language

L(G1) = {anbmck | n ≥ m ≥ k ≥ 1}.

If M1 = {µ} with µ(p) = 0 for all p ∈ P , then it generates the language

L(G1) = {anbncn | n ≥ 1}.

•

S → ABC

A → aA B → bB C → cC

A → a B → b C → c

Fig. 1. A Petri net N1.

Different labeling strategies and different definitions of the set of final markings
result in various types of Petri net controlled grammars. In this paper we consider
the following types of Petri net controlled grammars.

Definition 3. A Petri net controlled grammar G = (V, Σ, S, R, N, γ,M) is called

• free (abbreviated by f) if a different label is associated to each transition, and
no transition is labeled with the empty string;

• λ-free (abbreviated by −λ) if no transition is labeled with the empty string;
• extended (abbreviated by λ) if no restriction is posed on the labeling function γ.

Definition 4. A Petri net controlled grammar G = (V, Σ, S, R, N, γ,M) is called

• r-type if M is the set of all reachable markings from the initial marking ι, i.e.,
M = R(N, ι);

• t-type if M ⊆ R(N, ι) is a finite set;
• g-type if for a given finite set M0 ⊆ R(N, ι), M is the set of all markings such

that for every marking µ ∈ M there is a marking µ′ ∈ M0 such that µ ≥ µ′.
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We use the notation (x, y)-PN controlled grammar where x ∈ {f,−λ, λ} shows the
type of a labeling function and y ∈ {r, t, g} shows the type of a set of final markings.

We denote by PN(x, y) and PNλ(x, y) the families of languages generated by
(x, y)-PN controlled grammars without and with erasing rules, respectively, where
x ∈ {f,−λ, λ} and y ∈ {r, t, g}.

We also use bracket notation PN[λ](x, y), x ∈ {f,−λ, λ}, y ∈ {r, t, g}, in order to
say that a statement holds both in case with erasing rules and in case without erasing
rules.

The following inclusions are obvious.

Lemma 1. For x ∈ {f,−λ, λ} and y ∈ {r, t, g}, PN(x, y) ⊆ PNλ(x, y).

4. The Effect of Labeling on the Generative Power

The following lemma follows immediately from the definition of the labeling func-
tions.

Lemma 2. For y ∈ {r, t, g}, PN[λ](f, y) ⊆ PN[λ](−λ, y) ⊆ PN[λ](λ, y).

We now prove that the reverse inclusions also hold.

Lemma 3. For y ∈ {r, t, g}, PN[λ](−λ, y) ⊆ PN[λ](f, y).

Proof. Let G = (V, Σ, S,R, N, γ, M) be a (−λ, y)-Petri net controlled grammar
(with or without erasing rules) where y ∈ {r, t, g} and N = (P, T, F, ϕ, ι). Let

R>1 ={r : A → α ∈ R | |γ−1(r)| > 1},
T>1 ={t ∈ T | γ(t) = r, r ∈ R>1},
F>1 ={(p, t) ∈ F | t ∈ T>1} ∪ {(t, p) ∈ F | t ∈ T>1}.

For each rule r : A → α ∈ R>1, we define the set Vr = {At | γ(t) = r} of new
nonterminal symbols, and with the rule r, we associate the set

Rr = {A → At, At → α | r : A → α ∈ R>1 and γ(t) = r}
of new rules. Correspondingly, we set

Tr = {c1
t , c

2
t | r : A → α ∈ R>1 and γ(t) = r}

where c1
t and c2

t are new transitions labeled by the rules A → At and At → α for each
t with γ(t) = r, respectively. We define the following sets of new places

Pr = {pt | r : A → α ∈ R>1 and γ(t) = r}
and arcs

Fr ={(p, c1
t ) | c1

t ∈ Tr and p ∈ •t} ∪ {c2
t , p) | c2

t ∈ Tr and p ∈ t•}
∪ {(c1

t , pt), (pt, c
2
t ) | c1

t , c
2
t ∈ Tr and pt ∈ Pr}.
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Let X¦ =
⋃

r∈R>1 Xr where X ∈ {V,R, P, T, F}. We consider an (f, y)-Petri
net controlled grammar G′ = (V ′, Σ, S, R′, N ′, γ′,M ′) where V ′ = V ∪ V ¦ and R′ =
(R − R>1) ∪ R¦ and N ′ = (P ′, T ′, F ′, ϕ′, ι′) is a Petri net where the set of places,
transitions and arcs are defined by

P ′ = P ∪ P ¦, T ′ = (T − T>1) ∪ T ¦, F ′ = (F − F>1) ∪ F ¦;

the weight function ϕ′ is defined by

ϕ′(x, y) =





ϕ(x, y) if (x, y) ∈ F,

ϕ(p, t) if x = p ∈ •t and y = c1
t , t ∈ T>1,

ϕ(t, p) if x = c2
t and p ∈ t•, t ∈ T>1,

1 otherwise;

the initial marking ι′ is defined by

ι′(p) =

{
ι(p) if p ∈ P,

0, if p ∈ P ¦;

the bijection γ′ is defined by γ′(t) = γ(t) if t ∈ T − Tλ and for all c1
t , c

2
t ∈ Tr,

r ∈ R>1, γ′(c1
t ) = A → At and γ′(c2

t ) = At → α;
for each τ ′ ∈ M ′,

τ ′(p) =

{
τ(p) if p ∈ P,

0, if p ∈ P ¦.

Let S
r1···rj====⇒ wj

r=⇒ w′j
rj+1···rk=====⇒ wk ∈ Σ∗ be a derivation in G where r : A → α ∈

R>1. Then the rule r : A → α can be replaced by the pair A → At, At → α for some
t ∈ T>1 in one-to-one correspondence with the transition t of N where γ(t) = r, by
the transitions c1

t and c2
t of N ′, and vice versa. Hence L(G) = L(G′). 2

Lemma 4. For y ∈ {r, t, g}, PN(λ, y) ⊆ PN(−λ, y).

Proof. Let G = (V,Σ, S, R, N, γ,M) be a (λ, y)-Petri net controlled grammar with
N = (P, T, F, ι). Let Tλ = {t ∈ T | γ(t) = λ} and

Fλ = {(p, t) | p ∈ P and t ∈ Tλ} ∪ {(t, p) | t ∈ Tλ and p ∈ P}.
We define the i-adjacency set of t ∈ T by

Adji(t) = {t′′ | t′′ ∈ (Adj1(t′)) for some t′ ∈ Adji−1(t) ∩ Tλ} for i ≥ 2

where Adj1(t) = (t•)• and the complete adjacency set by

Adj∗(t) =
⋃

i≥1

Adji(t).

A transition t′ ∈ Adj∗(t) is called an adjacent transition of t. Adj+(t) denotes the set
of non λ adjacent transitions of t ∈ T , i.e., Adj+(t) = Adj∗(t)− Tλ.
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Let Tλ = {t1, t2, . . . , tn}. For each ti ∈ Tλ, 1 ≤ i ≤ n, we define the set of new
transitions T (ti) = {[t]i | t ∈ Adj+(ti)}. We introduce the set R(ti) of new rules with
respect to each ti ∈ Tλ, 1 ≤ i ≤ n,

R(ti) = {A → A | A → α = γ(t) ∈ R and t ∈ Adj+(ti)}.
We define a (−λ, y)-PN controlled grammar G′ = (V,Σ, S, R′, N ′, γ′,M ′) where

R′ = R ∪⋃
ti∈Tλ

R(ti) and N ′ = (P, T ′, F ′, ι) where

T ′ = (T − Tλ)∪
⋃

ti∈Tλ

T (ti),

F ′ = (F − Fλ)∪
⋃

ti∈Tλ

{(p, [t]i) | p ∈ •ti and [t]i ∈ T (ti)}

∪
⋃

ti∈Tλ

{([t]i, p) | [t]i ∈ T (ti) and p ∈ t•i }.

The weight function ϕ′ is defined by

• ϕ′(x, y) = ϕ(x, y) if (x, y) ∈ F − Fλ,

• ϕ′(p, [t]i) = ϕ(p, ti) if p ∈ •ti and [t]i ∈ T (ti), ti ∈ Tλ,

• ϕ′([t]i, p) = ϕ(ti, p) if p ∈ t•i and [t]i ∈ T (ti), ti ∈ Tλ.

The labeling function γ′ : T ′ → R′ is defined by

• γ′(t) = γ(t) for all t ∈ T ,

• γ′([t]i) = A → A ∈ R(ti) where [t]i ∈ T (ti), ti ∈ Tλ and t ∈ Adj+(ti) with
γ(t) = A → α ∈ R.

Let S
r1r2···rn=====⇒ wn ∈ Σ∗ be a derivation in G. Then

t′11 · · · t′1k(1)t1t
′
21 · · · t′2k(2)t2 · · · tnt′n+11 · · · t′n+1k(n+1) (1)

is a successful occurrence sequence in N where γ(ti) = ri, 1 ≤ i ≤ n and t′ij ∈ Tλ for
all 1 ≤ i ≤ n+1, 1 ≤ j ≤ k(i) such that ti ∈ Adj+(t′ij) for all 1 ≤ i ≤ n, 1 ≤ j ≤ k(i).

Each λ-transition t′ij , 1 ≤ i ≤ n, 1 ≤ j ≤ k(i) in (1) can be replaced by the
transition t′′ij in N ′, 1 ≤ i ≤ n, 1 ≤ j ≤ k(i) with the label Ai → Ai where Ai is the
left side of the rule ri, γ(ri) = ti, 1 ≤ i ≤ n. Then

t′′11 · · · t′′1k(1)t1t
′′
21 · · · t′′2k(2)t2 · · · t′′n1 · · · t′′nk(n)tn (2)

is a successful occurrence sequence in N ′ and correspondingly

S
σ1r1σ2r2···σnrn==========⇒ wn ∈ Σ∗

is a derivation in G′ where σi = r′′i1r
′′
i2 · · · r′′ik(i), γ′(r′′ij) = t′′ij , 1 ≤ i ≤ n, 1 ≤ j ≤ k(i).

Using the same idea, we can show the inverse inclusion. 2
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It is easy to see that the proof of Lemma 4 holds for grammars with erasing rules,
too. We present another proof in the following lemma since its construction has a
smaller increase of the number of places, transitions and edges.

Lemma 5. For y ∈ {r, t, g}, PNλ(λ, y) ⊆ PNλ(−λ, y).

Proof. Let G = (V, Σ, S, R,N, γ, M) be a (λ, y)-PN controlled grammar where
y ∈ {r, t, g} and N = (P, T, F, ϕ, ι). Let Tλ be the set of all λ-transitions of T .
We construct the (−λ, y)-PN controlled grammar G′ = (V ′, Σ, S′, R′, N ′, γ′,M ′) as
follows.

We set V ′ = V ∪ {S′, X} where S′ and X are new symbols and

R′ = R ∪ {S′ → SX, X → X,X → λ}
and construct N ′ = (P ′, T ′, F ′, ϕ′, ι′) where

• the sets of places, transitions and arcs of N ′ are defined by

P ′ = P ∪ {p′, p′′},
T ′ = T ∪ {t′, t′′},
F ′ = F ∪ {(p′, t′), (t′, p′′), (p′′, t′′)},

• the weight function is defined by

ϕ′(x, y) =

{
ϕ(x, y) if (x, y) ∈ F,

1 otherwise,

• the initial marking is defined by ι′(p) = ι(p) for all p ∈ P and ι′(p′) = 1, ι′(p′′) =
0,

• for every τ ′ ∈ M ′, τ ′(p) = τ(p) for all p ∈ P and τ ′(p′) = τ ′(p′′) = 0,

• and the total function γ′ : T ′ → R′ is defined by γ′(t) = γ(t) if t ∈ T − Tλ,
γ′(t) = X → X if t ∈ Tλ, γ′(t′) = S′ → SX, and γ′(t′′) = X → λ.

Let D : S
r1r2···rk=====⇒ wk ∈ Σ∗ be a derivation in G where ν = ν1t1ν2t2 · · · νktkνk+1,

γ(ti) = ri for all for all 1 ≤ i ≤ k and γ(νi) = λ for all 1 ≤ i ≤ k + 1 is an occurrence
sequence in N enabled at the initial marking ι and finishing at a marking µk ∈ M .

We construct a derivation D′ in G′ from the derivation D as follows. We initialize
the derivation D with the rule S′ → SX. For any λ-transition t in the occurrence
sequence ν we apply the rule X → X and terminate the derivation with the rule
X → λ:

S′ ⇒ SX

|ν1|︷ ︸︸ ︷
X → X ·r1========⇒ w1X

|ν2|︷ ︸︸ ︷
X → X ·r2========⇒ · · ·

|νk|︷ ︸︸ ︷
X → X ·rk========⇒ wkX

X→λ===⇒ wk ∈ Σ∗

and t′ν1t1ν2t2 · · · νktkνk+1t
′′ is a successful occurrence sequence in N ′ where µ(p′) =

µ(p′′) = 0 for any µ ∈ M ′.
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On the other hand, for each derivation

S′ ⇒ SX
r1···rj====⇒ wjX

X→λ===⇒ wj
rj+1···rm======⇒ wm ∈ Σ∗

in G′ by removing the first step, (j + 1)-th step and the nonterminal symbol X from
the derivation, we get a derivation in G where the corresponding occurrence in N ′

sequence is obtained by removing the transitions t′, t′′ and changing the labels X → X
of transitions to λ. 2

The following theorem is a combination of the lemmas given above.

Theorem 6. For y ∈ {r, t, g},
PN(f, y) = PN(−λ, y) = PN(λ, y) ⊆ PNλ(f, y) = PNλ(−λ, y) = PNλ(λ, y).

5. The Effect of Final Markings on the Generative Power

We start with a lemma which shows that the use of final markings increases the
generative power.

Lemma 7. PN[λ](λ, r) ⊆ PN[λ](λ, t).

Proof. Let G = (V, Σ, S,R, N, γ,M) be a (λ, r)-PN controlled grammar (with or
without erasing rules) where N = (P, T, F, ϕ, ι). We set

Tp = {tp | p ∈ P} and Fp = {(p, tp) | p ∈ P}
where tp and (p, tp) for all p ∈ P are new transitions and arcs, respectively. We
construct a (λ, t)-PN controlled grammar G′ = (V, Σ, S,R, N ′, γ′,M0) with the Petri
net N ′ = (P, T ∪ Tp, F ∪ Fp, ϕ

′, ι) where

• the weight function ϕ′ is defined by ϕ′(x, y) = ϕ(x, y) if (x, y) ∈ F and ϕ′(x, y) =
1 if (x, y) ∈ Fp,

• the labeling function γ′ is defined by γ′(t) = γ(t) if t ∈ T and γ′(t) = λ if t ∈ Tp,

• the set M0 of final markings is defined by M0 = {(0, 0, . . . , 0)}.
Let S

r1r2···rk=====⇒ wk ∈ Σ∗ be a derivation in G where ν = t1t2 · · · ts, γ(ν) =
r1r2 · · · rk, is an occurrence sequence in N enabled at ι and finished at some µs ∈ M .
We continue the occurrence sequence ν by firing the transition tp µs(p) times, for
each place p ∈ P , and after

∑
p∈P µs(p) steps we get the marking µ′ where µ′(p) = 0

for all p ∈ P . Thus L(G) ⊆ L(G′).
Moreover, it is easy to see that an earlier use of a transition tp either leads to a

blocking of the derivation (since an input place p of a transition t has not enough
tokens and therefore, the corresponding rule γ(t) cannot be applied) or it has no
influence on the derivation, i.e., the use of tp can be shifted after the finishing of the
derivation. Therefore L(G) = L(G′) holds. 2
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Corollary 8. PN[λ](λ, r) ⊆ PN[λ](λ, g).

Proof. Let G = (V, Σ, S,R, N, γ,M) be a (λ, r)-PN controlled grammar (with or
without erasing rules) where N = (P, T, F, ϕ, ι). We construct a (λ, g)-PN controlled
grammar G′′ = (V, Σ, S,R, N ′, γ′,M ′) where V , Σ, S, R, N ′ and γ′ are defined as for
the grammar G′ in the proof of Lemma 7. If we define M ′ as the set of any marking
µ ∈ R(N ′, ι) which is greater than or equal to µ′ = (0, 0, . . . , 0), then the inclusion
follows immediately. 2

Lemma 9. PN[λ](λ, g) ⊆ PN[λ](λ, t).

Proof. Let G = (V, Σ, S,R, N, γ, M) be a (λ, g)-PN controlled grammar (with or
without erasing rules) where N = (P, T, F, ϕ, ι) and M is the set of all markings such
that for every marking µ ∈ M there is a marking µ′ of a given finite set M0 ⊆ R(N, ι)
such that µ ≥ µ′. Let p0 be a new place. We define

• the sets TM0 = {tµ | µ ∈ M0} and TP = {tp | p ∈ P} of new transitions;

• the sets

F−M0
= {(p, tµ) | µ ∈ M0 and p ∈ P where µ(p) 6= 0},

F+
M0

= {(tµ, p0) | µ ∈ M0},
FP = {(p, tp) | p ∈ P}

of new arcs.

We construct the Petri net N ′ = (P ∪{p0}, T ∪TM0∪TP , F ∪F−M0
∪F+

M0
∪FP , ϕ′, ι′)

where

• the weight function ϕ′ is defined by ϕ′(x, y) = ϕ(x, y) for all (x, y) ∈ F ,
ϕ′(p, tµ) = µ(p) for each (p, tµ) ∈ F−M0

, and ϕ′(tµ, p0) = 1 for each (tµ, p0) ∈
F+

M0
;

• the initial marking ι′ is defined by ι′(p) = ι(p) for all p ∈ P and ι′(p0) = 0.

We define a (λ, t)-PN controlled grammar G′ = (V, Σ, S, R,N ′, γ′,M ′) where

• γ′(t) = γ(t) if t ∈ T and γ′(t) = λ otherwise;

• M ′ = {µ′} where µ′(p) = 0 for all p ∈ P and µ′(p0) = 1.

Let D : S
π=⇒ w ∈ Σ∗, π = r1r2 · · · rn, be a derivation in G, then there is an

occurrence sequence ν = t1t2 · · · ts such that ι
ν−→ µ where γ(ν) = π and µ ∈ M . By

definition, there is a marking µ′ ∈ M0 such that µ ≥ µ′. It follows that the transition
t′µ can occur and the place p0 receives a token, and the rest tokens in places of P can
be removed by firing transitions tp. It is not difficult to see that D is also a derivation
in G′.

If D′ : S
π=⇒ w ∈ Σ∗, π = r1r2 · · · rn, is a derivation in G′ with a successful

occurrence sequence ν = t1t2 · · · ts where γ′(π) = ν, then ι′ ν−→ µ′ where µ′(p) = 0
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for all p ∈ P and µ′(p0) = 1. Since µ′(p0) = 1, |ν|tµ = 1 for some µ ∈ M0. Without
loss of generality we can assume that ν = ν′ · ν′′ where ν′ contains only transitions
of T and ν′′ contains only transitions of TP and the transition tµ. Then, γ′(ν′) = π,

γ′(ν′′) = λ and ι′ ν′−→ µ′′ where µ′′ ≥ µ. It follows that D′ is also a derivation in G.2

Lemma 10. PN[λ](λ, g) ⊆ PN[λ](λ, r)

Proof. Let G = (V, Σ, S, R,N, γ, M) be a (λ, g)-Petri net controlled grammar
where N = (P, T, F, ϕ, ι) and M is the set of all markings such that for every marking
µ ∈ M there is a marking µ′ in a given finite set M0 ⊆ R(N, ι) such that µ ≥ µ′.

We set Σ̄ = {ā | a ∈ Σ} where ā, a ∈ Σ, is a new nonterminal symbol and define
a bijection φ : V ∪ Σ → V ∪ Σ̄ as

φ(x) =

{
x if x ∈ V,

x̄ if x ∈ Σ

Let
R̄ = {A → φ(α) | A → α ∈ R} and RΣ = {ā → a | a ∈ Σ}.

We define a (λ, r)-PN controlled grammar G′ = (V ∪ Σ̄, Σ, S, R̄ ∪ RΣ, N ′, γ′,M ′)
where N ′ = (P ′, T ′, F ′, ϕ′, ι′) and

P ′ = P ∪ {p′, p′′}, T ′ = T ∪ TM0 ∪ TΣ, F ′ = F ∪ FM0 ∪ FΣ ∪ Fp′ ∪ Fp′′

where p′, p′′ are new places,

TM0 = {tµ | µ ∈ M0} and TΣ = {ta | a ∈ Σ}
are sets of new transitions,

FM0 = {(p, tµ) | p ∈ P and tµ ∈ TM0},
Fp′ = {(p′, tµ) | tµ ∈ TM0},
Fp′′ = {(tµ, p′′) | tµ ∈ TM0},
FΣ = {(p′′, ta), (ta, p′′) | ta ∈ TΣ}

are sets of new arcs.
The weight function ϕ′ is defined by ϕ′(x, y) = ϕ(x, y) if (x, y) ∈ F , ϕ′(p, tµ) =

µ(p) if µ ∈ M0 and ϕ′(x, y) = 1 if (x, y) ∈ Fp′ ∪ Fp′′ ∪ FΣ.
The initial marking ι′ is defined by ι′(p) = ι(p) if p ∈ P and ι′(p′) = 1, ι′(p′′) = 0.
The bijection γ′ is defined by γ′(t) = A → φ(α) if t ∈ T and γ(t) = A → α,

γ′(t) = λ if t ∈ TM0 , and γ′(ta) = ā → a for all a ∈ Σ.
For each τ ′ ∈ M ′, τ ′(p′) = 0, τ ′(p′′) = 1.

Let D : S
r1r2···rn=====⇒ w ∈ Σ∗ be a derivation in G and ν = t1t2 · · · tm, ι

ν−→ µm,
is a successful occurrence sequence of transitions of N where γ(ν) = r1r2 · · · rn. By
definition, µm ≥ µ for some µ ∈ M0. Let w = ai1ai2 · · · aik

, ai1 , ai2 , . . . , aik
∈ Σ,

k ≥ 1.
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We construct a derivation D′ in G′ with respect to D as follows:

D′ : S
r̄1r̄2···r̄n=====⇒ w̄

rai1
rai2

···raik=========⇒ w

where r̄i ∈ R̄, 1 ≤ i ≤ n and r̄ : A → φ(α) for each r : A → α ∈ R, w̄ = āi1 āi2 · · · āik
,

and raij
: āij

→ aij
, 1 ≤ j ≤ k. One can easily see that ν′ = ν · tµ · tai1

tai2
· · · taik

is a successful occurrence sequence of transitions of N ′ and γ′(ν′) = r̄1r̄2 · · · r̄n ·
rai1

rai2
· · · raik

. Therefore, L(G) ⊆ L(G′).

Let S
π=⇒ w ∈ Σ∗ be a derivation in G′. Then, π ∈ (R̄∪RΣ)∗ and the corresponding

successful occurrence of sequence ν of transitions of N ′ is of the form ν = ν′ · tµ · ν′′
for some ν′, ν′′ ∈ (T ∪ TΣ)∗ and for some tµ ∈ TM0 .

Without loss of generality we can change of the order of application of rules in π
such that π = π′ · π′′ where π′ ∈ R̄∗ and π′′ ∈ R∗Σ. Correspondingly, for ν we have
ν = ν′ · tµ · ν′′ where γ′(ν′) = π′ and γ′(ν′′) = π′′. It follows that S

r1r2···rn=====⇒ w is a
derivation in G where r1r2 · · · rn corresponds to π′ = r̄1r̄2 · · · r̄n and γ(t1t2 · · · tm) =
r1r2 · · · rn where γ′(t1t2 · · · tm) = π′. Hence, t1t2 · · · tm is a successful occurrence
sequence for M . It follows that L(G′) ⊆ L(G). 2

In the remaining part we discuss the relation between Petri net controlled lan-
guages and matrix languages.

Lemma 11. For x ∈ {f,−λ, λ} and y ∈ {r, t, g}, PNλ(x, y) ⊆ MATλ.

Proof. Let G = (V, Σ, S, R,N, γ, M ′) be a (x, y)-Petri net controlled grammar with
N = (P, T, F, ϕ, ι) where x ∈ {f,−λ, λ} and y ∈ {r, t, g}. Let P = {p1, p2, . . . , pn}.

We set V ′ = V ∪ P̄ ∪ {S′, B} where P̄ = {p̄ | p ∈ P} is a set of new nonterminal
symbols and S′, B are new nonterminal symbols. Let

•t = {pi1 , pi2 , . . . , pik
} and t• = {pj1 , pj2 , . . . , pjm}, t ∈ T.

We associate the following sequences of rules with each transition t ∈ T

σi1 : p̄i1 → λ, p̄i1 → λ, . . . , p̄i1 → λ︸ ︷︷ ︸
ϕ(pi1 ,t)

(3)

σi2 : p̄i2 → λ, p̄i2 → λ, . . . , p̄i2 → λ︸ ︷︷ ︸
ϕ(pi2 ,t)

(4)

· · ·
σik

: p̄ik
→ λ, p̄ik

→ λ, . . . , p̄ik
→ λ︸ ︷︷ ︸

ϕ(pik
,t)

(5)

σB : B → Bp̄
ϕ(t,pj1 )
j1

p̄
ϕ(t,pj2 )
j2

· · · p̄ϕ(t,pjm )
jm

(6)

and define the matrix
mr = (σi1 , σi2 , . . . , σik

, σB , r) (7)
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where r = A → α = γ(t) ∈ R. Furthermore, we add the starting matrix

m0 = (S′ → SB ·
∏

p∈P

p̄|ι(p)|) (8)

According to types of the sets of final markings we consider three cases of erasing
rules:

Case y = t. For each τ ∈ M ′,

mτ,λ = (B → λ, p̄1 → λ, . . . , p̄1 → λ︸ ︷︷ ︸
τ(p1)

, . . . , p̄n → λ, . . . , p̄n → λ︸ ︷︷ ︸
τ(pn)

). (9)

Case y = r.

mp,λ = (p̄ → λ) for each p ∈ P and mB,λ = (B → λ) (10)

Case y = g. Here we consider matrices (9) together with matrices (10).

We consider the matrix grammar G′ = (V ′, Σ, S′,M) where M consists of all
matrices of (7)-(8) and matrices (9) (Case y = t), matrices (10) (Case y = r) or
matrices (9)-(10) (Case y = g).

Let D : S
r1r2···rn=====⇒ w ∈ Σ∗ be a derivation in G. Then ν = t1t2 · · · ts where

γ(ν) = r1r2 · · · rn is an occurrence sequence of transitions of N enabled at the initial
marking ι.

We construct the derivation D′ in G′ which simulates the derivation D. The
derivation D′ starts with S′ ⇒ SB · ∏p∈P p̄|ι(p)| applying the matrix (8), then for
each pair of a transition t in ν and the corresponding rule r = γ(t), we choose a
matrix of the form (7). When the terminal string w ∈ Σ∗ is generated, in order to
erase the remaining symbols from P̄ and the symbol B we use matrices of the form
(9), (10) or (9) and (10) depending on y ∈ {r, t, g}.

Let D′ : S′ m0=⇒ SB ·∏p∈P p̄|ι(p)| mi1mi2 ···min=========⇒ wn = w ∈ Σ∗ be a derivation in G′.

Since V ∩ P̄ = ∅, we can write a derivation D′′ : S
rj1rj2 ···rjk=======⇒ wjk

= w ∈ Σ∗ where rji

is the rule of the non-erasing matrix mrji
, 1 ≤ i ≤ k in D′ and we omit those steps

in D′ in which erasing matrices are used.
The application of a matrix mr of the form (7) in D′ shows that there are at least

ϕ(pi1 , t) pieces of p̄i1 , etc., and at least ϕ(pik
, t) pieces of p̄ik

in the sentential form, i.e.,
the input places pi1 , pi2 , pik

of t have at least ϕ(pi1 , t), ϕ(pi2 , t), . . ., ϕ(pik
, t) tokens,

respectively. Thus, the transition t, γ(t) = r is enabled in N . We can construct the

successful occurrence sequence ι
tj1 tj2 ···tjk−−−−−−−→ µk where γ(tji) = rji , 1 ≤ i ≤ k. Hence,

D′′ is a derivation in G. Thus L(G′) ⊆ L(G).

Now let E : S
rj1rj2 ···rjk=======⇒ wjk

= w ∈ Σ∗ be a derivation in G. Then we also have

the derivation E′ : S′ m0=⇒ SB
mj1mj2 ···mjk=========⇒ w′jk

B in G′ where w′jk
differs from wjk
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only in letters p̄ with p ∈ P . These letters and B can be erased with matrices (9),
(10) or (9) and (10) depending on y ∈ {r, t, g}. Thus L(G) ⊆ L(G′). 2

Lemma 12. MAT[λ] ⊆ PN[λ](−λ, r).

Proof. Let G = (V,Σ, S, M) be a matrix grammar (with or without erasing rules)
and M = {m1, m2, . . . ,mn} where mi = (ri1, ri2, . . . , rik(i)), 1 ≤ i ≤ n. Without loss
of generality we can assume that G is without repetitions. Let R = {rij | 1 ≤ i ≤
n, 1 ≤ j ≤ k(i)}.

We set Σ̄ = {ā | a ∈ Σ} where, for a ∈ Σ, ā is a new nonterminal symbol. We
define the bijection ψ : V ∪ Σ → V ∪ Σ̄ by

ψ(x) =

{
x if x ∈ V,

x̄ if x ∈ Σ,

and for each rule r = A → x1x2 · · ·xl ∈ R, we introduce the new rule r̄ = A →
ψ(x1)ψ(x2) · · ·ψ(xl).

Let M̄ = {m̄1, m̄2, . . . , m̄n} where m̄i = (r̄i1, r̄i2, . . . , r̄ik(i)), 1 ≤ i ≤ n, and
MΣ = {(ā → a) | a ∈ Σ}.

We construct the matrix grammar G′ = (V ∪Σ̄,Σ, S, M̄∪MΣ). Obviously, L(G) =
L(G′).

We define a (−λ, r)-PN controlled grammar G′′ = (V ∪Σ̄, Σ, S,R′, N, γ,M ′), where
R′ = R∪ {ā → a | a ∈ Σ} and N = (P, T, F, ϕ, ι) is a control Petri net where the sets
of places, transitions and arcs are respectively defined by

P ={p0} ∪ {pij | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)− 1},
T ={ta | a ∈ Σ} ∪ {tij | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)},
F ={(p0, ta), (ta, p0) | a ∈ Σ} ∪ {(p0, ti1), (tik(i), p0) | 1 ≤ i ≤ n}

∪ {(tij , pij) | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)− 1}
∪ {(pik(i)−1, tik(i)) | 1 ≤ i ≤ n}.

The weight function is defined by ϕ(x, y) = 1 for all (x, y) ∈ F , and the initial marking
is defined by ι(p0) = 1, and ι(p) = 0 for all P ′−{p0}. The labeling function γ : T → R′

is defined by γ(ta) = ā → a for all a ∈ Σ and γ(tij) = rij , 1 ≤ i ≤ n, 1 ≤ j ≤ k(i).
Let

S = w0

mi1==⇒ w1

mi2==⇒ · · · mil==⇒ wl = w ∈ Σ∗ (11)

be a derivation in G′, where mij , 1 ≤ j ≤ l is an element of M̄ or MΣ, and

wj−1

mij==⇒ wj : wj−1

r̄ij1r̄ij2···r̄ijk(ij)
===========⇒ wj or wj−1

ā→a===⇒ wj

for some a ∈ Σ. Then by definition of γ, µj−1
νj−→ µj where νj = tij1tij2 · · · tijk(ij) or

νj = ta and µj = ι for all 1 ≤ j ≤ l. Hence, according to (11), we can construct the
successful occurrence sequence ι

ν1ν2···νl−−−−−→ ι of transitions of N . Therefore, S
π1π2···πl=====⇒

wl ∈ Σ∗ is a derivation in G′′, where, for each 1 ≤ j ≤ l, πj = r̄ij1r̄ij2 · · · r̄ijk(ij) or
πj = ā → a for some a ∈ Σ.
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Let D : S
r1r2···rl=====⇒ w ∈ Σ∗ be a derivation in G′′ where ν = t1t2 · · · tl, γ(ti) = ri,

1 ≤ i ≤ l, is a successful occurrence sequence of transitions of N .
If ti1 with 1 ≤ i ≤ l starts in ν, then in the next steps ti2, ti3, . . . , tik(i) can only fire

in this order. Another tj1, 1 ≤ j ≤ l or ta for some a ∈ Σ can fire after tik(i) occurs.
By definition of γ, the corresponding label rules r̄i1, r̄i2, . . . , r̄ik(i) are the elements of
one matrix m̄i ∈ M̄ , i.e., m̄i = (r̄i1, r̄i2, . . . , r̄ik(i)). Thus the application of matrices
of G′ can be simulated by occurrence sequence of transitions of N . It follows that D
is also a derivation in G′. 2

Now we summarize our results in the following theorem.

Theorem 13. The relations in Figure 2 hold where x ∈ {f,−λ, λ} and the lines
denote inclusions of the lower families into the upper families.

MAT

PN(x, r) = PN(x, g)

PN(x, t)

MAT
λ = PN

λ(x, r) = PN
λ(x, g) = PN

λ(x, t)

Fig. 2. The hierarchy of language families generated

by arbitrary Petri net controlled grammars.
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Tarragona, Spain, pp. 27–39, 2008.

[6] HACK M., Petri net languages, MIT, Lab. Comp. Sci., Techn. report 159, Cambridge,
Mass., 1976.
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