ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 12, Number 2, 2009, 219-233

Complexity Aspects of the Recognition
of Regular and Context-Free Languages

by Accepting Hybrid Networks
of Evolutionary Processors

Peter LEUPOLD!, Remco LOOS?, Florin MANEA3

! Department of Mathematics, Faculty of Science, Kyoto Sangyo University
Kyoto 603-8555, Japan

E-mail: leupold@cc.kyoto-su.ac. jp

2 EMBL - European Bioinformatics Institute
Wellcome Trust Genome Campus, Hinxton, Cambridge, UK, CB10 1SD

E-mail: remco.loos@ebi.ac.uk

3 Faculty of Mathematics and Computer Science, University of Bucharest
Academiei 14, Bucharest, Romania, 010014

E-mail: flmanea@gmail.com

Abstract. In this paper we address the size complexity of Accepting Hy-
brid Networks of Evolutionary Processors (AHNEPs) that recognize regular and
context-free languages. We present AHNEPs of small constant size for both
classes. We show that any regular language can be accepted by an AHNEP of
size 6, while AHNEPs of size 9 suffice for all context-free languages, moreover
accepting them in linear time. Both bounds constitute significant improvements
of the best known upper bounds.

1. Introduction

An interesting question for any type of computational model is how concisely it
can represent given formal languages. This is the topic of the field of descriptional
complexity. We present results from this area for Hybrid Networks of Evolutionary
Processors (HNEPs for short, [1]), that is we try to find the least complex instance

220 P. Leupold et al.

of this model that can describe a given language. As for most of the computational
models defined so far, there are different ways in which the complexity of an HNEP
can be measured. In this paper we focus mainly on size complexity (i.e. the number
of processors in the network), though we will also consider time complexity, i.e. the
number of steps performed by the network during the computation on an input word).

In the case of Accepting Hybrid Networks of Evolutionary Processors (AHNEPS),
the results obtained so far regard the size of networks accepting recursively enumerable
([5, 7]), context-free and regular languages ([9]). In this paper we present improved
bounds for the latter two classes.

First, we propose an AHNEP of size 6 for the acceptance of a regular language.
This also allows us to introduce the techniques we will then use to show that AHNEPs
of size 9 can accept all context-free languages, by simulating the push-down automata
recognizing them. We obtain these constant bounds, independent of the specific
language, by direct construction rather than through an encoding into a 2-letter
alphabet, as in [5].

Interestingly, the constructed networks do not only provide a concise description
of the given languages, but are also computationally efficient. From [6, 5, 8] we
know that NP = PTIMFE gnNEP, thus for every language L in the NP complexity
class, decided by a non-deterministic one-tape Turing machine in time P(n) for some
polynomial P, there exists an AHNEP that decides L in O(P(n)) steps. So far,
this was also the best known bound for context-free languages. We stress that the
AHNEPs in our constructions need only a linear amount of steps to accept a word
of their accepted languages. Thus they are not only small in size, but they are also
computationally efficient.

2. Preliminaries

In this section we define the most important notions used throughout this paper.
For a more detailed presentation we refer to [2]. Also, we mention that for the general
definitions, notations and results concerning push-down automata, finite automata,
context-free languages and regular languages we refer to [4]. We only briefly recall
that for every context-free language L there exists a non-deterministic push-down
automaton, accepting with final states, and without A-transitions, recognizing L.

An alphabet is a finite and nonempty set of symbols. The cardinality of a finite set
A is written card(A). Any sequence of symbols from an alphabet V' is called string
(word) over V. The set of all strings over V' is denoted by V* and the empty string
is denoted by A. The length of a string z is denoted by |z|, while alph(z) denotes the
minimal alphabet W such that z € W*.

We say that a rule a — b, with a,b € VU {A} is a substitution rule if both a and
b are not \; it is a deletion rule if a # A and b = XA; it is an insertion rule if a = A
and b # A. The set of all substitution, deletion, and insertion rules over an alphabet
V' are denoted by Suby, Dely, and Insy, respectively.

Given a rule as above ¢ and a word w € V*, we define the following actions of o
on w:

Recognition of Context-Free Languages by AHNEPs 221

{ubv : Ju,v € V* (w = uav)},
{w}, otherwise
{uv: Ju,v € V* (w = uav)},
{w}, otherwise

o If o =a — b e Suby, then 0*(w):{

o If o =a — X € Dely, then U*(w):{

Ur(w):{ {u: w=ua}, Ul(w):{ {v: w=av},

{w}, otherwise {w}, otherwise

elfoc =X—aé€ lnsy, then

o*(w) = {uav : Ju,v € V* (w=wv)}, o"(w) = {wa}, o'(w) = {aw}.
The parameter a € {*,[,r} expresses the way of applying a deletion or insertion rule
to a word, namely at any position (o = %), in the left (o« = 1), or in the right (o = r)
end of the word, respectively. For every rule o, action « € {*,l,r}, and L C V* we

define the a-action of o on L by 0*(L) = |, “(w). Given a finite set of rules M,
we define the a-action of M on the word w and the language L by:

M%(w) = U o%(w) and M(L) = U M (w),

oceM weL

respectively. In what follows, we shall refer to the rewriting operations defined above
as evolutionary operations since they may be viewed as language theoretical formula-
tions of local gene mutations. Given two disjoint and nonempty subsets P and F' of
an alphabet V' and a word over V', the following predicates are defined:

oW (w; P,F)= P C alph(w) A Fnalph(w) =0
@ (w; P,F) = alph(w)NP#0 A Fnalph(w) = 0.

In these predicates the two sets P (permitting contexts) and F (forbidding contexts)
define the networks’ random-context conditions.
For every language L C V* and 3 € {(1), (2)}, we define:

¢’ (L, P,F) ={we L|¢’(w; P,F)}.
An evolutionary processor over V is a tuple (M, PI, FI, PO, FO), where:

o (M C Suby) or (M C Dely) or (M C Insy). The set M represents the set of
evolutionary rules of the processor. As one can see, a processor is “specialized”
in one evolutionary operation, only.

e PI FI CV are the input permitting/forbidding contexts of the processor, while
PO, FO CV are the output permitting/forbidding contexts of the processor.

We denote the set of evolutionary processors over V' by EPy. An accepting hybrid
network of evolutionary processors (AHNEP for short) is a 7-tuple I = (V, U, G, N,
a, B, x1, o), where:

e VV and U are the input and network alphabet, respectively, and V C U.

222 P. Leupold et al.

G = (Xg, E¢) is an undirected graph with the set of nodes X¢ and the set of
edges Fg. G is called the underlying graph of the network.

N : Xg¢ — FEPy is a mapping which associates with each node = € X¢g the
evolutionary processor N(z) = (M, PI,, FI,, PO,, FO,).

a: Xg — {*1,r}; a(x) gives the action mode of the rules of node = on the
words existing in that node.

G:Xae — {(1),(2)} defines the type of the input/output filters of a node. More
precisely, for every node, x € X, the following filters are defined:

input filter: pz(s) = @5(””)(~;PI,;7FI$),
output filter: () = @ (; PO,, FO,).

That is, p,(w) (resp. 7,) indicates whether or not the string w can pass the
input (resp. output) filter of . More generally, p, (L) (resp. 7.(L)) is the set
of strings of L that can pass the input (resp. output) filter of x.

e z; and zp € X is the input node, and the output node, respectively, of the
AHNEP.

We say that card(Xq) is the size of II, and we denote this by size(II). If a(z) = a(y)
and f(z) = B(y) for any pair of nodes z,y € X¢, then the network is said to be
homogeneous. In the theory of networks some types of underlying graphs are common,
e.g., rings, stars, grids etc. Networks of evolutionary processors with underlying
graphs having these special forms have been considered in a series of papers [1, 2, 10,
3]. We focus here on complete AHNEPs, i.e. AHNEPs whose underlying graph is a
complete one. For n nodes this graph is denoted by K, ; it has edges between every
pair of nodes including loops from a node to itself.

A configuration of an AHNEP II as above is a mapping C' : X¢ — 2Y which
associates a set of strings with every node of the graph. These sets consist of those
strings which are present in the respective node at a given moment. A configuration
can change either by an evolutionary step or by a communication step. When changing
by an evolutionary step, each component C(x) of the configuration C' is changed in
accordance with the set of evolutionary rules M, associated with the node z and
the way of applying these rules «(x). Formally, we say that the configuration C’ is
obtained in one evolutionary step from the configuration C, written as C = C’, iff

C'(x) = M@ (C(x)) for all z € Xg.

When changing by a communication step, each node processor x € X sends one
copy of each string it has, which is able to pass the output filter of z, to all the node
processors connected to x and receives all the strings sent by any node processor
connected with = providing that they can pass its input filter.

Formally, we say that the configuration C’ is obtained in one communication step
from configuration C, written as C'+ C’, iff

C'(2) = (C(2) = m(C(2))) U |J ((Cw))Npu(Cy))) for all z € Xe.

{z,y}€Eqg

Recognition of Context-Free Languages by AHNEPs 223

Let II be an AHNEP. The computation of II on the input string w € V* is a
sequence of configurations C(()w), C{w)7 C’Q(w), ..., where Céw) is the initial configuration
of TI defined by C{"(z;) = w, where C\")(z) = § for all 2 € X¢ if # # 2, and
where Cé;u) = 05;21 and Cé;fv_gl F Cé;f"_gg, for all ¢ > 0. By the previous definitions,
each configuration C’i(w) is uniquely determined by the configuration C’fﬁ; thus, each
computation in an AHNEP is deterministic. A computation as above immediately
halts if one of the following two conditions holds:

(i) There exists a configuration in which the set of strings existing in the output
node xp is non-empty. In this case, the computation is said to be an accepting
computation.

(ii) The configurations obtained after two consecutive evolutionary or communica-
tion steps are identical.

In the aforementioned cases the computation is said to be finite. The language
accepted by II is

L(IT) = {w € V* | the computation of IT on w is an accepting one}.

We say that an AHNEP II decides the language L C V* iff L(II) = L and the

computation of IT on every x € V* halts.
We also define the time complexity of the finite computation C’éz), C{I), Cém),

..C¥) of T on o € V* is denoted by Timer(x) and equals m. The time complexity
of II is the partial function from N to N,

Timer(n) = max{Timen(z) | x € V", |z| = n}.
For a function f: N — N we define

Timeagnpp(f(n)) = {L| there exists an AHNEP II which decides L
and ng € N such that Vn > ng(Timen(n) < f(n))}.

Moreover, we write

. . k
PTimesgngep = U Timeaygngp(n®).
k>0

Further we present already known results regarding AHNEPs that accept context-
free languages. Since each context-free language is a recursively enumerable language,
one can construct an AHNEP that simulates a Turing Machine accepting that lan-
guage. This approach leads to the following theorem:

Theorem 1. For any recursively enumerable language L, recognized by a one-tape
Turing Machine M = (Q, V1, Va, 6, qo, B, F), there exists an AHNEP 11 of size 24
accepting L. Also, if M makes f(|w|) steps on the acceptance of w then II makes
O(f(Jw])) steps on the acceptance of w.

224 P. Leupold et al.

Another way to obtain an AHNEP architecture for the recognition of context-free
languages is to simulate the computation of a non-deterministic push-down automaton
accepting the given context-free language. The result was as follows.

Proposition 1. If L is a contezt-free language and T = (Q, V, %, qo, Zo, 0)
18 a mon-deterministic push-down automaton, accepting with empty stack, without \-
transitions, such that L(T') = L, then there exists an AHNEP 11 such that size(Il) =
3|Q| +2|X| + 5 and L(II) = L.

In contrast to Theorem 1, this results in AHNEPs of variable size. Depending on
the push-down automaton’s and the alphabet’s size, either Theorem 1 or Proposition
1 can provide the smaller AHNEP for a given context-free language. Since the imple-
mentation of a push-down store on a Turing tape will require additional states and/or
alphabet symbols, Proposition 1’s bound will be better in most cases.

4. Accepting Regular Languages

The main goal of the investigations presented here is to improve the descriptional
complexity bounds for the acceptance of context-free languages as given by Proposi-
tion 1 and also by Theorem 1. First, however, we will take a small detour via regular
languages. For these we can present a class of very small AHNEPs. The way in which
they simulate a finite automaton uses the same mechanisms that we will use later on
to simulate push-down automata. Therefore these AHNEPs also offer an opportunity
to understand these techniques in an environment that is less complex and easier to
oversee.

This said we now proceed to present a class of AHNEPs over complete graphs
with six nodes that can accept every regular language.

Theorem 2. For every regqular language L there exists an AHNEP over the
complete graph with six nodes that accepts L.

Proof. We look at the alphabet as an ordered set V = {a1,as,...,ar} with k
elements. For a given regular language L let A = (Q,V, 4, qo, F') be a deterministic
finite automaton that accepts this language; @ is the set of states, § : (@ x V) — Q
is the transition function, qq is the start state, and F' C @ the set of final states. The
functioning of a finite automaton is considered as common knowledge here.

We now construct an AHNEP II = (V,U,G,N,a, 3, Ini, Fin) that accepts L
based on the deterministic finite automaton for this language. The network alphabet
U will not be defined explicitly, as it consists of all the symbols used below in the
processors’ definition. Rather we describe the meaning of a class of new symbols we
introduce: a symbol [g, a, ¢] shall mean that the automaton is now in state ¢ and will
go to state ¢’ by reading a. Thus these symbols store the complete information of a
transition of the automaton. The simulation of the automaton’s operation will then
consist of

e introducing the symbol for a transition starting from the initial state,

Recognition of Context-Free Languages by AHNEPs 225

e checking whether the first letter of the input word is the same as read in that
transition,

e deleting that letter and replacing the transition’s symbol by the one of a possible
following transition.

The main technical problem here is matching the input word’s letters with the ones
in the symbols corresponding to transitions. Because none of the rules have left hand
sides of length two or longer, it is not possible to let one rule application verify their
equality. Rather, this is done by first marking both letters and then decreasing them
simultaneously according to the order of the alphabet. If they matched in the begin-
ning, then they will reach a; in the same cycle, and only then the computation should
proceed. The processors that are used to do this are the following:

e Node Ini (the network’s input node):
- M(Ini) ={\ = [q0,a,q] | (qo,a) = ¢} U{A — F | if qp is final, i.e. XA € L},
~ a(lni) = r, B(Ini) = (2),
— PI(Ini) = 0, FI(Ini) = U,
— PO(Ini) = {[qo, a,q] | 5(qo, a) = ¢}, FO(Ini) = 0.

e Node Mark:
-~ M(Mark) ={a—a |a€V},
—a(Mark) = *, f(Mark) = (2),
— PI(Mark) = PO(Ini), FI(Mark) ={a' | a € V}U{F, A1},
— PO(Mark)={d' |a €V}, FO(Mark) ={a" |a € V}.

e Node Dec:
B M(Dec) = {all - a/llv [q7al7q/] - [qvallvq/] | qvq/ € Q} U
U{a; — ai 1, 1g,a5,q]1 = lg,ai_1, '] |1 <i<k,qq €Q}
— a(Dec) = *, B(Dec) = (2),
— PI(Dec) = PO(Mark), FI(Dec) = {F},
- PO(Dec) = {a” | a € V'}, FO(Dec) = {[g,0,') | 4,4 € Qra € V}.

e Node T'rans:
- M(Trans) ={af —a} |1 <i<k}U
U{[%aqu/} - [Q7a'i’q/} ‘ 1 <i< kv%ql € Q} U
Ullg. a1, q'l — [d'sa,q"] | 6(¢'sa) = ¢"} U {af — A1}V
Ulg,a1,¢] = FlqeQ,q € F},
— a(Trans) = *, B(Trans) = (2),
— PI(Trans) = PO(Dec), FI(Trans) = {F},
— PO(Trans) = {A1}U{d | a € V},
FO(Trans) ={d" |a € V}U{[¢g,d,¢] | a€V,q ¢ € Q}.

e Node Del:
— M(Del) = {A; — N},
—a(Del) =1, B(Del) = (2),

226 P. Leupold et al.

— PI(Del) = {A1}, FI(Del) = {[g,a},q'] | 1 <i<k,q,q¢ € Q},
— PO(Del) = 0, FO(Del) = {A;}.

e Node Fin (the network’s output node):
— PI(Fin) ={F}, FI(Fin) =U\ {F}.

We will not prove the correctness of the construction in all detail. Rather we
will trace a possible input string and argue that it can produce the string F' in node
Trans if and only if it is accepted by the original automaton. From node Ini the input
string can exit only after a symbol [qo, a, g is added on its right side. Afterwards no
string can enter node Ini anymore; therefore we do not need to consider it anymore.
Similarly, no string can exit node Fin, and only strings from {F}* can enter this
node; therefore we will leave it aside for the time being. Finally also the node Del
will be left aside for now, because its input filters let pass only strings containing A,
which will not occur during the first steps.

The resulting string from node I'ni cannot enter node Trans, because none of the
symbols required by PI(Trans) is present, similar for node Des. So it only enters
node Mark. There one letter must be marked before it can exit, the resulting string
enters only in node T'rans. Note that only marking of the first letter lets us simulate a
transition reading it; this is ensured by the fact that marking of a different letter will
not let this mark be deleted in node Del, which works only on the left-most symbol.
From node Dec the string can exit only after two rules have been applied. Either
the initial letter has received a second prime (which fulfills PO(Dec)), and also the
letter a in the symbol [g, a,¢’] has been changed (to pass F'O(Dec)). Both letters
are decreased one step in the alphabet’s order and receive another prime. Since both
steps have to be taken, the two letters can be decreased in a synchronized manner in
this way. The second case is where the letter is already aq, then it is simply marked
without further decreasing it.

The exiting string can only enter node Trans. There different things can happen.
If the marked symbol is not a1, then the second prime and the mark in the symbol of
type [gq, a, ¢'] are removed. FO(Trans) ensures that both things are done before the
string can exit. If the marked symbol is a;, then it is changed to A; and the symbol
of type [g, a, ¢'] is replaced by one representing a possible next transition. The format
of the resulting string differs in the format of the first letter. If it does not contain
Aj it can go directly to node Dec to further decrease the marked symbol.

If the string contains A;, then the only node that can receive this string is Del,
and there A; is deleted. As stated before, note that the deleting rule works only on
the left-most symbol. If the symbol appears in any other position, the resulting word
cannot pass FO(Dec), and remains trapped in this node. After the deletion of A,
the string can enter node Mark to mark the (new) first letter and start the simulation
of the next transition. Strings obtained as in the first case described above for node
Trans already carry a letter with one prime and cannot enter node Mark because of
FI(Mark).

It is also important to note that the derivation can only continue if the a in the
appended symbol [q, a,q’] is the same as the first symbol of the word. Indeed, if

Recognition of Context-Free Languages by AHNEPs 227

we have a string of the form a;z[q, ag,q’] with ¢t # k entering in node Mark, the
decreasing process will take place as described, until arriving at a string A;x[q, a;, ¢'],
with j > 1, if t < k, or a string a;jz[q,a1,¢'], j > 1 otherwise, in node Trans. Both
strings can leave the node, but cannot pass any input filter, so they are lost. In this
way, only correct simulations can lead to an accepting computation.

If the simulated transition results in an accepting state of the automaton, then
the symbol of type [g, a,¢’] can also be rewritten to F' in node Trans. The resulting
string can only enter node Del. From there it can only go to node Fin after the
deletion of Ai, and this only if no other letter is left. This means that the entire
input has been read when the final state is reached, which is exactly the acceptance
condition of the finite automaton. a

We illustrate the construction used in the proof by a small example.

Example 1. We start out from the finite automaton A = ({qo, ¢, s}, {a, b}, 9, o,
{gr}), where 6(qo,a) = qv. 6(q»,a) = gy, 6(qp,b) = @, and ¢ is undefined for all other
parameters. This automaton accepts the language ab™a. For the alphabet we assume
the order a < b, this means a is a; and b is ay following the nomenclature in the
proof. Let IT4 be the AHNEP constructed from A using the technique presented in
Theorem 2.

We refrain from reproducing the mechanical exercise of constructing the resulting
AHNEP II4. Rather, we present an example of the computation of II4 on a given
input to show how it simulates the moves of A.

Figure 1 shows the accepting computation for the input word abba. The lines
represent the configurations, i.e. the current contents of the nodes in one column
each. |} stands for a computation step, i.e. for the application of a rule. — and
< stand for communication steps, where the unique non-empty string present in
the network enters the node whose column contains this arrow. Recall from the
argumentation in the proof above that at any given time exactly one string will be
present in the network. Further, we omit the nodes Ini and Fin, because they will
not contain any string during the phase depicted in the table.

The first step is the application of the rule A\ — [go, a,] in the node Ini. The
resulting string abba[qo, a, gp] is then communicated to Mark, it cannot pass the input
filters of any other node. Figure 1 follows the steps in the computation from this point,
until a string F' is reached. This string will now be communicated to node F'in and
thus the computation ends with the acceptance of abba.

The minimal size for an AHNEP is two, because at least input and output node
need to be present. With these alone, however, one cannot really perform any signif-
icant computation. At the very least one more node will be necessary. Intuitively, it
also seems clear that one node will not yield much computational power, since one
node alone cannot make use of the control that input and output filters provide. It
cannot use the different mechanisms of rewriting on just one side or anywhere, either.
Therefore the bound of six nodes must be very close to the optimum.

228 P. Leupold et al.

Mark Dec Trans Del
abbalqo, a, q] - - -
A
a’'bbalqo, a, qu) s - -

- a//bba[QD7 a, Qb] - -

4
- a" bba[qo, a’, gv) — -
4
- - Aybbalqo,a’, b -
4
- - A1bbalgs, b, qb) —
4
- - - bba[qb7 b7 qb]
I
b'balqy, b, qv) - - -
b/a[qbv b, qb} - - -
a'[qv, a, gy) - - -
- - [qb7 CL/, qf] -
4
_ _ F _

Fig. 1. The accepting computation of AHNEP II4 on input abba.

5. Accepting Context-free Languages

In this section we extend our approach to the design of an AHNEP accepting
a context-free language, effectively described by the push-down automaton that ac-
cepts it.

Let L be a context-free language, and I' = (Q, F, V, X, qo, Zo, 0) be a non-
deterministic push-down automaton, accepting with final states, and without \-tran-
sitions, recognizing this language. In this paper we use the following convention: if
(¢,) € 6(¢',a,Z) is a transition of the push-down automaton I', we assume that the
rightmost symbol of « is placed highest on the stack, while the leftmost symbol of
« is placed lowest on the stack. Moreover, we can assume without loss of generality
that if (¢, «) € 6(¢’,a,Z) then a does not contain the symbol Zy. Finally, let Kt =
1+ max{|al | (¢,0) € 6(g,0,7),Ya € V,q € Q, 7 € %}.

Theorem 3. There exists an AHNEP 11 = (V,U,G,N,«a,3,1,9) such that
L(IT) = L, and G is the complete graph with 9 nodes.

Proof. As before we look upon the input and stack alphabet as ordered sets, so

Recognition of Context-Free Languages by AHNEPs 229

that V = {a1,...,a,} and ¥ ={Zy, Z1,..., Z,,}. We define the working alphabet of
IT as follows. Let U = VUX U{S$,8*,# #*}U{d,a® |a e V}U{Z Z° |a eV}
U {la1,a, Z, g2, 0], 41,8, Z, g2, 0], 01,8, Z,q2,0), [q1,8,Z,q2,0]*, [q1,8,Z,q2,0],
(01,8, Z,q2,0]%, [q1,8, %, a2, a;, [q1,8,#, g2, 1%, [q1,8,#,42,0]° | 1,42 € Q, a €V,
ZeX, aeX |al < Kr}.

The processors placed in the 9 nodes of the network are defined as follows:

e Node 1 (the input node of the network):
- M(l) = {)‘ - [q07au Zqu/7a] | q/ € Qaa eV,aeXr, (q/,Oé) € 5(q07a7Z0)}7
—a(l)=r, B(1)=(2)
~PI(1) =0, FI(1) = U,
~ PO(1) = U, FO(1) = 0.

e Node 2:
- M(2) ={X— Zo},
—a(2) =71, f(2) = (2)
- PI(2) ={lqg0,0,Z0,4,0] | ¢ € Q,a € V,a € ¥* (¢, a) € §(qo,a, Zp)},
FI(2)=U\ (PI(2)UV).
~ PO(2) =U, FO(2) = 0,

e Node 3:
- M(g) = {[Q7 a? Z7 ql7 a] - [q7a7 Z’ ql7a]/7 [q’ $7 Z7 ql7 a] - [q7 $777 ql7a]/7 [q7 $7 #7q/7
Zoal — 4,8, #,¢,a]° | q,4 € Q,a€V,Z €X,a € ¥*,|a| < Kr} U{o — o}U
Wia,$,#.¢,a] = [4,8,#,¢,0]° | ¢.¢ € Qa €V, Z €L, a € £*,0 < |a] < Kp}U
U{lg, 8, #.¢ N — [d,a,Z,4", 0] | (¢",a) € (¢ 0, 2)} U{Z° — Z | Z € &},
—a3)=x p5(3)=(2)
- PI(3) ={lg,a,2,¢,q], [¢,%,Z,¢',a] | q,¢ € Q,a € V,Z € ¥,a € ¥*,|a| < KT,
such that a does not contain Zy} U {[q,$,#, ¢, Zo]} U {c}, FI(3) = {$, #}.
~ PO(3) = U, FO3) = PIB)U{Z° | Z € 2YU{[¢,$,#.,¢,Z00a] | ¢ € Q,a €
¥ el < Kr},

e Node 4:
- M(4) =
lg,ai, Z,¢ o) — [q,8i-1,2,¢,a]* | ¢,¢ € Q,1 <i<k,ZeX ae¥* |a <Kr}U
[g.01,Z,q',0]" — [4,%,Z,q',a]* | ¢, € Q,Z € ¥, € ¥*, |a| < KT }U
[Qa$a giaq/aa]/ - [Q7$7Zi—17qlvar | q, q/ € Qvo <@ < m,a € 2*7 ‘a| < KF}U
(0,8, Z0,¢ ;0] — (4,8, #,¢,2]* | ¢, € Q,a € ¥*,|a| < KT }U
(9,8, #.,4', Zia]° — [q,8,#.,4', Zi-10]° | ¢,¢' € Q,0 <i <m,a € ¥*,[a] < Kr}U
fo 29} U2 — 72, 11 i < m— 1}
{a; = a}_q,a; —a? ;|1 <i<k}U{as — $°,a} — $°}U
(Zi— 2820 — 22 |V << W U{Zo— 4% 25 — #°)
—a(d) =x B(4) =(2) _
- PI(4) = {lg,a,2,q,0]', (4,8, 2,4 ,a], [¢,8,#,d",0]° | ¢,¢' € Q1 <i <k, Z €
Sa€ ¥ ol < Kry ULt U{d |ae VYU{Z,2° | Z e s}, FI(4)=U\ (VUSU
PI(4)V).

{
{
{
{
{

230 P. Leupold et al.

~POM4) ={a* |a € V}U{Z*,2°| Z € S} U{$*, #°}, FO(4) = PI(4),

e Node 5:
- M(5) =
{lg, a:, Z,q',0]* — [q,0:, Z,¢',a) | ¢,¢ € Q,1 <i<k,ZeX ac¥ |a < Kr}U
W[, $,Z,¢,a]* — [4,%,2,¢,a] | q,¢ € Q,Z € Z, a0 € ¥, |a| < Kr}U

U{[q7 $7 Zi’q/7a:|. - [q, $77i7q/’a]l | q’q/ G Q’O S 7: S m7a 6 2*7 |a| < KF}U
U{lg.8,#.¢',a]* — [0,8,#. ¢, Zoa] | ¢,¢' € Q, 0 € 7,0 < |a] < Kr}U

U{lg,8, %, ¢ N* — [¢.8,#,¢,\] | ¢.¢' € Q}U

Wlq,$,#., ¢, Zoa]® — [q,8,#,¢', Zoa] | ¢,¢' € Q,a € ¥*,0 < |ao| < Kp}U
U{[Q7$a#aq/a Zia]o - [Qa $7#7q/7Z’ia]o ‘ Qaq/ S Q70 <1 S m,x € Z*a |O[‘ < KF}U
U{[q7 $7 #’ q/’ ZO:IQ—)[q/, a? Z’ q”? a] ‘q’ q/’ q//€Q7 aev; ZGE? ae 2*7 (q,/’ Oé)E(S((]I, a7 Z)}U

U{Zy - Z2 |1 <i<m}U{al —a,|1<i<k}u{Z — Z[|0<i<k}U

U{#* — #}U{$* — §}

—a(5) = %, B(5) = (2)

~PI(5) ={$*,#°}U{a® |a € VIU{Z*,Z° | Z € X}U{[q1, @, Z, q2,2]*, [q1, 8, Z, g2,]°,
[Q17$727q23a].7 [Q17$7#7QQ5Q].3 [q1,$,#,q2,a]° | q1,492 € Qa a < V7 S Ev a € 2*7
lo| < Kr}, FI5)=U\ (VUXUPI(5)).

- PO(5) =U, FO(5) = PI(5),

e Node 6:
- M(6) = {3 — A}
—a(6) =1, B(6) = (2)
= PI(6) = {8}, FI(6) =U\(VUZU{$}U{[9.8,Z,¢".a]} [¢.d' € Q, Z € X, a € ¥,
|a\ <KF}) .
- PO(6) =U, FO(6) =0,

e Node 7:
- M(7) ={# — A}
—a(7) =7, B(7) = (2)
= PI(T) = {#}, FI(T) = U\ (VUZU{#}U{[g,8,#,¢.a]} | ,¢' € Q, o € 7,
la] < KT}).
- PO(7)=U, FO(7) =0,

e Node 8:
-M@B)={\—o}
—a8)=r,3(8) =(2)
- PI(8) ={[¢,$,#,¢,Z0a] | ¢, € Q, a € E*, 0< |a| < Kr}, FIR) =U\ (VUXZU
{Z°| Z € S} UPI(R)).
- PO8) =U, FO(8) =1,

e Node 9 (the output node of the network):
FI(9)=U\ (X UPI9).

Recognition of Context-Free Languages by AHNEPs 231

We show that II accepts a word w iff w € L. The construction uses the idea,
presented in Theorem 2, of synchronously decreasing an index to correctly simulate
a move of the automaton. A symbol [g,a, Z, ¢, «] represents a transition (¢',«) €
0(q,a,Z) of . Now, 3 steps of matching are needed; one, as in Theorem 2, to match
a to the currently read input symbol, one to match the symbol on top of the stack
to Z and finally one to write a onto the stack. Again, we will trace a possible input
string and show that it can produce the string in the output node if and only if it is
accepted by the original automaton.

1. L C L(ID).

Let w be a word from L. Assume that w is present in the node 1 at the beginning
of the computation. In this node the string becomes w(qo, a, Zo, ¢1,], with a the
first symbol of w and (q1,«) € 6(qo,a, Zg). The string exits the node 1 and enters
node 2, where it becomes wlqo, a, Zo, g1, @] Zy and is communicated to node 3. Now
a so-called iterative phase is started. Assume, for the sake of generality, that at the
beginning of the iterative phase a string of the form axx[q, ax, Z;, ¢', &]3Z; is found in
node 3 (this assumption holds after the preprocessing phase). In node 3 the string be-
comes a,x[q,ax, Zi,q , o) 5Z;, and is communicated in the network; it can only enter
node 4. The first cycle of the iterative phase begins now. In this node, the string is
transformed into aj_,z[q, 51, Z;,¢',a|*3Z; and is further communicated; the string
enters node 5. Now the string becomes aj,_,z[q,ar—1, Z;,q', ' 5Z; and goes back to
node 4. This cycle continues until the string a}z[q, a7, Z;, ¢, o] 5Z; enters node 4,
where it is transformed into $°z[q,$, Z;, ¢, @]*8Z;. This string goes to node 5 where
it becomes $x[q,$, Z;, ¢, a]8Z;. This string can only enter node 6 where the leftmost
symbol § is deleted. This finishes the matching of the input symbol.

The resulting string z[q,$, Z;, ¢', a]3Z; enters node 3 where it is transformed into
z[q,$, Z;i, ¢,)/ BZ;, marking the start the second cycle, which matches the symbol on
top of the stack. Then the string enters node 4, where z[q,$, Z;_1, ¢, a]*8Z?_, is ob-
tained. It then goes to node 5 where it is transformed into z[q,$, Z;_1,¢’, o)’ 3Z!_, and
is communicated back to node 4. Again, this cycle is iterated until the string becomes
z(q,$, Zo,q',)’ BZ} and enters node 4; here it is transformed into z[q, $, #, ¢’,]® B#*
and is communicated to node 5.

In this node we obtain x[q, $, #, ¢', Zoa]B8#, if a # A, or z[q, $, #, ¢, \|B# otherwise;
these strings can only enter node 7, where the rightmost symbol # is deleted. Thus we
may obtain the strings z[q, $, #, ¢, Zoa]8, for a # A, or z[q, $, #, ¢, \]8, otherwise.
In both cases, if z = X and ¢’ € F, the string enters the output node 9. If & = A, the
third (write-in-stack) cycle can be skipped, and the string enters the node 3 where the
simulation of the next transition starts by rewriting the string as z[¢’,b, Z’, ¢", &']3,
where b is the first symbol of , Z’ is the last symbol of 3, and (¢”, ') € §(¢',a’, Z").
Otherwise, if o # A, the string enters node 8 and becomes z[q, $, #, ¢, Zoa]Bo. It is
then communicated to node 3 where it is transformed into z[q, $, #, ¢/, @]°fo and is
sent to node 4. Now, the write-in-stack section of the iterative phase begins. Assume
that @ = Z;o”. In node 4 the string is transformed into z[q,$, #, ¢, Z; _1a"]°BZ3,
which enters node 5. Here we obtain the string z[q, $, #, ¢/, Z;—1a"']°8Z, which goes
back to node 4. In node 4, the string is transformed into x[q,$, #, ¢, Z:—2a"|°BZS,

232 P. Leupold et al.

and goes back to node 5, and the cycle is iterated until the string x[q, $, #, ¢', Zoa'']°8Z7
enters node 5.

If o/ = A, this string is transformed into z[¢’,b, Z’, ¢", /|3, where b is the first sym-
bol of z, Z’' is the last symbol of 3, and (¢”,a’) € §(¢’,a’,Z’). This string enters
node 3 and the iterative phase is restarted for this next transition. Otherwise, if
o' #), the string is transformed into z[q, $, #, ¢, Zoa'’|3Z; and enters node 8 where
a o symbol is inserted to the right. The write-in-stack phase then continues for the
first symbol of o”. Tt is clear that in one full iteration of the iterative phase we
obtain from the string arz|q, ar, Z;, ¢, @)3Z; the string x[¢’, at, Zn, ", &']Pa, where
(¢',a) € 6(q,ax, Z;). Thus, for an input word w € L, in the |w|-th iteration of this
phase, we will have obtained from the word w{qo, a, Zy, q1, @] Zo the word [q, $, #, f, o]y
with f final state, and this words enters the output node. To conclude w € L(II) and,
consequently L C L(P3).

2. LD L(I).

In most cases the filters ensure that the derivation can be performed only as described
above. Moreover, by the same mechanism as in Theorem 77, if the matching process
is unsuccessful, the resulting string will be lost. However, some cases require some
closer attention. First, we analyze the first cycle. Assume that other symbol a;, with
t < n, than the first symbol of z[q, ax, Z;, ¢, @] is transformed into a}. If ¢ < k this
symbol is transformed into $ in ¢ iterations of the cycle, and the string, communicated
by node 5, can enter node 6 (only in the case when ¢ = k, otherwise it cannot enter
any node and is lost). Here the $ is not deleted, and the string is, once again, lost.
Also, to see that there cannot be harmful interference between different cycles, assume
that during the execution of the first cycle a symbol Z;, t < m, is transformed into Z.
Again, in at most ¢ steps either the string will contain symbols [¢,$, Z;,¢’, o] and Z’
with Z € ¥, so cannot enter any node and is lost, or alternatively it will contain the
symbol # and is also lost. Consequently, the only symbols that can be transformed
in the first cycle are the first symbol of the string and the symbol [q, a;, Z;, ¢,).
Similar arguments show that during the second cycle, if a symbol a is rewritten to a,
no accepting computation can follow. Also if during the write-in-stack section of the
computation, a symbol a or Z is transformed into a’ or Z’, respectively, the string will
be eventually lost. These considerations show that only the strings that are processed
during the iterative phase as described in the proof of the inclusion 1 can be accepted
by the network. Thus L D L(II) and we have proved that L = L(II).]

Corollary 1. Any context-free language L can be accepted by an AHNEP 11 of
size 9, such that for each w € L, TIME gngp(IT) € O(Jw|).

Proof. During the iterative phase, a constant number of steps is performed. This
number depends on the size of the alphabet and on the maximum length of a string
that is written in a transition on the stack. Since the iterative phase is performed for
|w]| times, given that w is the input word, it follows that the total number of steps
performed by the network on a input of length n is O(n). O

This shows that our construction is not only efficient from a descriptional point of
view, but from the computational point of view as well. This result seems interesting

Recognition of Context-Free Languages by AHNEPs 233

considering that we already knew (from Theorem 1) that L can be accepted using a
constant size AHNEP with 24 nodes simulating a one-tape Turing Machine accepting
L, and now we were able not only to improve the size of the network to 9, but also we
have shown that the time complexity of the acceptance of the words in L, using this
construction, is linear (we are not aware of an one-tape Turing Machine algorithm
working in linear time for the acceptance of context-free languages, thus we cannot
use Theorem 1 to produce an AHNEP working in linear time for the acceptance of
context-free languages, as well).

Acknowledgments. This work was done while Peter Leupold was funded as a
post-doctoral fellow by the Japanese Society for the Promotion of Science under grant
number P07810. Remco Loos’ work is supported by research grant ES-2006-0146 of
the Spanish Ministry of Education and Science. Florin Manea acknowledges partial
support from the Romanian Ministry of Education and Research (PN-II Program,
Project GlobalComp - Models, semantics, logics and technologies for global comput-
ing). Finally, all three authors would like to express their gratitude to Victor Mitrana
for the guidance and support provided as their doctoral advisor.

References

[1] CASTELLANOS J., MARTIN-VIDE C., MITRANA V., SEMPERE J., Solving NP-
complete problems with networks of evolutionary processors, Lect. Notes in Comput.
Sci., 2084, pp. 621-628, 2001.

[2] CASTELLANOS 1J., MARTIN-VIDE C., MITRANA V., SEMPERE J., Networks of
evolutionary processors, Acta Inform., 39, pp. 517-529, 2003.

[3] CASTELLANOS J., LEUPOLD P., MITRANA V., Descriptional and computational
complexity aspects of hybrid networks of evolutionary processors, Theor. Comput. Sci.,
330, pp. 205-220, 2005.

[4] HOPCROFT J.E., ULLMAN J.D., Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, 1979.

[5] MARGENSTERN M., MITRANA V., PEREZ-JIMENEZ M., Accepting hybrid net-
works of evolutionary systems, Lect. Notes in Comput. Sci., 3384, pp. 235-246, 2005.

[6] MANEA F., MARGENSTERN M., MITRANA V., PEREZ-JIMENEZ M., A New
Characterization of NP, P, and PSPACE With Accepting Hybrid Networks of Evolution-
ary Processors, in press, Theory of Computing Systems, Springer, doi:10.1007/s00224-
008-9124-7.

[7] MANEA F., MARTIN-VIDE C., MITRANA V., On the Size Complexity of Universal
Accepting Hybrid Networks of Evolutionary Processors, Math. Struct. in Comput. Sci.,
17:4, pp. 753-771, 2007.

[8] MANEA F., MITRANA V., All NP-problems Can Be Solved in Polynomial Time by
Accepting Hybrid Networks of Evolutionary Processors of Constant Size, Inf. Process.
Lett., 103:3, pp. 112-118, 2007.

[9] MANEA F., On the recognition of Context-Free languages using AHNEPs, Int. J. of
Comput. Math., 84:3, pp. 273-285, 2007.

[10] MARTIN-VIDE C., MITRANA V., PEREZ-JIMENEZ M., SANCHO-CAPARRINI F .,
Hybrid networks of evolutionary processors, Lect. Notes in Comput. Sci., 2723, pp. 401—
412, 2002.

