
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 12, Number 2, 2009, 235–247

Extended Networks of Evolutionary
Processors – ENEPs

Luis Fernando DE MINGO1, Nuria GÓMEZ1, Juan CASTELLANOS2
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Universidad Politécnica de Madrid, Crta. de Valencia km.7, Madrid, Spain, 28031

E-mail: {lfmingo,ngomez}@eui.upm.es
2 Dept. of Inteligencia Artificial, Facultad de Informática

Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain, 28660
E-mail: jcastellanos@fi.upm.es

Abstract. This paper presents some connectionist models that are widely

used to solve NP-problems. This paper shows some ideas about how to in-

corporate a learning stage, based on self-organizing algorithms, in networks of

evolutionary processors. T. Kohonen and P. Somervuo have shown that self or-

ganizing maps (SOM) are not restricted to numerical data. This paper proposes

a symbolic measure that is used to implement a string self organizing map based

on SOM algorithm. Such measure between two strings is a new string. Compu-

tation over strings is performed using a priority relationship among symbols, in

this case, symbolic measure is able to generate new symbols. A complementary

operation is defined in order to apply such measure to DNA strands. Finally, an

algorithm is proposed in order to be able to implement a string self organizing

map. This paper discusses the possibility of defining networks of evolutionary

processors to rely on similarity instead of distance and shows examples of such

networks for symbol strings.

1. Introduction

Neural Networks are well known numeric models, which are able to approximate
any function or classify any pattern set, provided that sufficient numeric information,
regarding that set, is injected into the network. This injection of information is usually
formalized by a supervised or unsupervised learning stage. On the other hand, a new
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research area, concerning symbolic information processing and classification, has been
developed, inspired by the works of G. Păun [1], the theory of Membrane Systems. A
step forward in this direction was done to obtain Networks of Evolutionary Processors
(NEP), introduced by Victor Mitrana [2]. A NEP is a set of processors placed in the
nodes of a graph, and connected by its edges; each processor only deals with symbolic
information using simple rewriting rules. For short, the objects (strings) in processors
can evolve and pass through processors until a stable configuration is reached.

Self Organizing maps are usually used for mapping complex, multidimensional
numerical data onto a geometrical structure of lower dimensionality, like a rectangular
or hexagonal two-dimensional lattice [3]. The mappings are useful for visualization
of data, since they reflect the similarities and vector distribution of the data in the
input space. Each node in the map has a reference vector assigned to it. Its value is
a weighted average of all the input vectors that are similar to it and to the reference
vectors of the nodes from its topological neighborhood. For numerical data, average
and similarity are easily computed: for the average, one usually takes the arithmetical
mean, and the similarity between two vectors can be defined as their inverse distance,
which is most often the Euclidian one. However, for non-numerical data [4]– like
symbol strings – both measures tend to be much more complicated to compute. Still,
like their numerical counterparts, they rely on a distance measure. For symbol strings
one can use the Levenshtein distance or feature distance.

For strings, one such measure is the Levenshtein distance [5], also known as edit
distance, which is the minimum number of basic edit operations – insertions, deletions
and replacements of a symbol – needed to transform one string into another. Edit
operations can be given different costs, depending on the operation and the symbols
involved. Such weighted Levenshtein distance can, depending on the chosen weighting,
cease to be distance in the above sense of the word.

Another measure for quantifying how much two strings differ is feature distance [3].
Each string is assigned a collection of its substrings of a fixed length. The substrings
the features are typically two or three symbols long. The feature distance is then the
number of features in which two strings differ. It should be noted that this measure
is not really a distance, for different strings can have a zero distance. Nevertheless,
feature distance has a practical advantage over the Levenshtein by being much easier
to compute.

A similarity measure is simpler than distance. Any function S : X2 → R can be
declared similarity – the question is only if it reflects the natural relationship between
data. In practice, such functions are often symmetrical and assign a higher value to
two identical elements than to distinct ones, but this is not required.

2. String Measure

Let V an alphabet over a set of symbols. A string x of length m belonging to an
alphabet V is the sequence of symbols a1a2 · · · am where the symbol ai ∈ V for all
1 ≤ i ≤ m. The set of all strings over V is denoted by V ∗, the empty symbol is λ and
the empty string is denoted by ε = (λ)∗.
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Let O : x → n, x ∈ V, n ∈ N a mapping that establish a priority relationship
among symbols belonging to V , u ≤ v iff O(u) ≤ O(v). Obviously O−1(O(x)) =
x, x ∈ V and O(O−1(n)) = n, n ∈ N , and O(λ) = 0,O−1(0) = λ. This mapping can
be extended over an string w in such a way that O(w) =

∑O(wi), wi ∈ w. Usually,
such mapping O covers a range of integer numbers, that is, the output is 0 ≤ i ≤ k,
where k = card(S), S ⊆ V .

It is important to note that new symbols can be generated provided that given
two symbols a, b ∈ V |O(a) −O(b)| > 1, and there is no symbol c such that O(a) <
O(c) < O(b). That is,

O−1(k) =
{

x ∈ V iff O(x) = k
sk i.o.c. , with k ∈ N .

Symbolic measure between two strings u, v ∈ V ∗, denoted by ∆(u, v), with |u| =
|v| = n is another string defined as:

∆(u, v) =
n⋃

i=1

O−1(|O(ui)−O(vi)|), where ui/vi is the i-th symbol ∈ u/v. (1)

For example, let u = (abcad), v = (abdac), and O the index of such symbol in the
latin alphabet, that is, O(a) = 1,O(b) = 2,O(c) = 3,O(d) = 4 then ∆(u, v) = λλaλa.
If u = (jonh), v = (mary) then ∆(u, v) = s3njs11, two new symbols s3, s11 are
generated (that correspond to s3 = c and s11 = k, usually such correspondence is
unknown).

A numeric value D can be define over a string w:

D(w) =

√√√√
|w|∑

i=0

O(wi)2, wi ∈ w. (2)

It is clear to proof that: D(∆(u, v)) = D(∆(v, u)), D(∆(u, u)) = 0, D(∆(u, ε)) =
D(u) and D(∆(u,w)) ≤ D(∆(u, v)) +D(∆(v, w)).

Mappings O/D also define a priority relationship among strings in V ∗ is such a
way that

u ≤ v iff

√√√√
n=|u|∑

i=1

O(ui)2 ≤

√√√√
n=|v|∑

i=1

O(vi)2,

u ≤ v iff D(u) ≤ D(v).

For short, symbolic measure between two string u, v is obtained using ∆(u, v), see
equation (2), and numeric measure is obtained using D(∆(u, v)), see equation (1).

Let x, y ∈ S ⊆ V two symbols belonging to alphabet, two symbols are comple-
mentary, denoted by (x, y)−, iff ∆(x, y) = x or ∆(x, y) = y. Such property can be
extended over strings, let u, v ∈ S∗ ⊆ V ∗, two strings are complementary, denoted by
(u, v)−, iff ∆(u, v) = u or ∆(u, v) = v.
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Theorem 1. Let u, v ∈ S∗, u and ∆(u, v) are complementary iff O(ui) >= O(vi)
for all 1 ≤ i ≤ n.

Proof.

∆(u, v) =
n⋃

i=1

O−1(|O(ui)−O(vi)|)

Hence:

∆(u, ∆(u, v)) =
n⋃

i=1

O−1(|O(ui)−O(∆(ui, vi))|) =

=
n⋃

i=1

O−1(|O(ui)−O(O−1(|O(ui)−O(vi)|)|) =

=
n⋃

i=1

O−1(|O(ui)− (|O(ui)−O(vi)|)|) =

=
n⋃

i=1

O−1(O(vi)) = v

2

Two strings u, v ∈ S∗ are Watson-Crick complementary (WC complementary),
denoted by (u, v)−WC , iff (ui, vi)− for all 1 ≤ i ≤ |u|.

Theorem 2. Let u, v ∈ S∗, if (u, v)− then (u, v)−WC .

Such duality in symbolic/numeric measures, see equations (1) (2), is a good mech-
anism in order to implement algorithms on biological DNA strands [7, 8]. Like DNA
or amino-acid sequences which are often subject to research in computational molec-
ular biology. There, a different measure – similarity – is usually used. It takes into
account mutability of symbols, which is determined through complex observations on
many biologically close sequences. To process such sequences with neural networks,
it is preferable to use a measure which is well empirically founded.

2.1. Different Length on Strings

Given two strings u, v, such that |u| = n ≥ |v| = m, and U(u) the set of all
substring w ⊆ u such that,

U(u)m = {w(j)||w(j)| = m,w = w1 · · ·wm, wi = uk, i = k + j},
∀ 0 ≤ j ≤ |u| −m.

The string measure between u, v, denoted by δ(u, v), is:

δ(u, v) = {∆(s, v)|s ∈ U(u)|v|,O(∆(s, v)) ≤ minx∈U(u)|v|{O(∆(x, v))}}.
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In this case, measure δ is the set of strings with the lower distance (see table
below). Such distance can be read as a the set of all matching strings with lower
distance. This δ can be used to identify cuting points (index j) over a DNA string
when applying a restriction enzyme, from a biological point of view.

u = abcdabcdab, v = cda

U(u)|v| u
a b c

b c d
c d a O(∆(cda, v)) = 0

d a b
a b c

b c d
c d a O(∆(cda, v)) = 0

d a b
δ(u, v) = {λλλ, λλλ}

Let |u| = |v|, it is clear that δ(u, v) = ∆(u, v) since U(u) = u.

3. String Self-Organizing Maps

The self-organizing map of symbol strings [3] (SSOM for short) does not differ
much from ordinary numerical SOM . It is also a low dimensional lattice of neu-
rons (usually two-dimensional quadratic or hexagonal lattice, sometimes one or three-
dimensional), but instead of having a reference vector of input space dimensionality
assigned to each node, reference strings are used. In the ordinary SOM , the reference
vectors approximate the average of similar input vectors and input vectors similar to
the reference vectors of the nodes from the topological neighborhood. In SSOM , the
reference strings aproximate the averages of corresponding input strings [4].

A string self-organizing map of size n (SSOMn
(i,j) for short) is a construct Φ =

{I, C, Ω} where (i, j) are the dimensions of the competitive layer, other parameters
are define as:

– I = {i1, i2, · · · , in} is the input nodes set,

– C is the competitive set, with (i× j) nodes,

C =





c11 c12 · · · c1j

c21 c22 · · · c2j

· · · · · · · · · · · ·
ci1 ci2 · · · cij





– and Ω : n× (i× j) → ωn,ij is a function that identifies the connection between
a given input node i and a competitive node (i, j), where ωn,ij ∈ U ⊆ V .
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Given a set U ⊆ V and S = {s1, s2, · · · , sk} of strings in U∗ ⊆ V ∗ in such a way
that the length of every string si ∈ S is |si| = n and a priority relationship among
strings in S defined using a given mapping O. The problem consists on finding the
set defined by mapping Ω such that it minimizes the overall distance ∆ with respect
the input set S.

The algorithm is based on the SOM algorithm, but in this case everything is
symbolic.

1. Inizialitation: Each element ωn,ij is randomly assigned a symbol in U .

2. Feeding: One string si ∈ S in presented in the input nodes set I. Nodes in
I work in a simple way, they just store information they received. Each node
ij ∈ I stores one symbol of string si, that is, ij = (si)j , 1 ≤ j ≤ n.

3. Propagation: Information on input nodes will pass through connection till com-
petitive layer. Nodes in competitive layer works as follows, and they will store
this information:

cij =
n⋃

k=1

∆(ik, ωk,ij) = ∆(si, (ω1,ijω2,ij · · ·ωn,ij)).

Such behavior is equivalent to compute distance between the input string and
the connection string. This way competitive nodes calculate all distances with
respect to the input string.

4. Winning: Nodes in C have all possible string measures, so there exists one node
clm ∈ C such that

D(clm) ≤ D(cij), ∀i, j

that is, node clm has the lower distance.

5. Learning: Only winning node will adjust his weights (based on winner-takes-all
algorithm) according to following equation:

ωi,lm = O−1(O(ωi,lm) + α(O(ii)−O(ωi,lm))).

Some results, in literature, that could be checked with this new measure can be:
for an example application of the string SOM, Igor Fisher generated a set of 500
strings by intorducing noise to 8 english words: always, certainly, deepest, excited,
meaning, remains, safety, and touch, and initialized a quadratic map with the Sammon
projection of a random sample from the set [9]. Another real world example is the
mapping produced from 320 hemoglobine alpha and beta chain sequences of different
species [10]. SOM and LV Q algorithms for symbol strings have been introduced by
[6, 4] and applied to isolated word recognition, for the construction of an optimal
pronunciation dictionary for a given speech recognizer.
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Table 1. Strings used in a SSOM ,
they have been modified with uniform noise

universe networks emulsion elements referred printing moonlike

vnfyctpb ndwwprjt fpwktjok fogmeqvt rggcopbb spkkrhkh lprnljjb

rlkxhpth mctunpnu hmtiqlnm bjdpdqtv rbhhrscg rsfnwiqd olrkjjjg

rojtdprg kgrxlumr gjsnrlpk bjcpdotu sbihoqed osiouiqf nmqklhkh

rliwbuth lctzppmt bjwksknq emfjdkqv pggeoudd oufqsjpe lqqpmflh

ulfudotb ohuxrthu eoumsllp bobjhlsu shihpseg orlqvflg lnlplfjb

unfwhuve lcwvorls dormsjml bocngnvq qcfcuqba pohosgmi noomjgkc

tklubstg phwvqtmu dnslufnq dleleovv segdqocc mpimqiqg nlpkkhhb

uniufuuc phsxlshu bkvnrkpn ckbpgmqt obicqoed qplkulnf lmolkjjd

wmhwcpqc peqwpphq flululnm glhmekss qgdftugf rojnqlnj jqrkniie

sogveusc qfuyqukr gnvmpgqo gibnfptv qgfetrfg stikvlpg lrmpkllg

sphsdotb kgtznoiv hmwlslrk dnbneorq rffeorff moimtflg lnmmkjkc

uqgscrrd qcturslt boslqlrn didmcmur qdfeordg qtkosiof krmlnjnb

rmhsfrtd pfrupqnp bltiqfpl foejbowu tegbtuhb osgnvimj omnqkhng

xnkyequh ndrymrls elwlpflq emfmhluv phhgophe osglsgpd kmnnnflb

vniucqpf kdsuptlp cnwmtjqm bkfpdotq ubdcprbf mrgotkqi nmpomihf

vofsguth nguyqslv gmtkuhrl fmelfosp rhdgtpdd qujqtlqj kqrmokkf

smlthqrf mcsymrlp hmtipknl djhpektq pceeppff srfowgmg nmlpmgmb

skixbsvd mdtyoukq hpwirglq gmhpcqrp tgffuscg pplowhqd lmppkjie

rmfudtqf lfsyqsmp cjuouhqn gkdkbptv thcbsqce nrklsfkh mnqkjjlh

vkjvfttd mcsynsns gktmvhmq dmbkfoqv pgderpdb qtgkuimi oonpjgnf

uohvhrse pertlqnv cntouhqk dihneqsr scidosed pqjosjkh nqlqjflg

wphuhuqc ngvyrpkq eproqlnp hlbmbqqr rhdcusbc mpkoqlqe pnlplhhh

skltdrsd kbtwntkt bpxjtglk bieoekus ucfhoodc mrgovgpi pomknhhb

uplygpph ndtuoojt hnukvkpm hlejcoqq pgfbtobb nuhpsgme nmmqlgmb

snhxhtrb qbsxopip cpuiqgqq fjhnblws tecfsubg sphkqjqe kromjkjf

Fig. 1. Projection of string samples corresponding to Table 1.

Table 1 shows strings used in a SSOM with a 3 × 3 competitive layer. Strings
are obtained adding uniform noise to original strings (first row in table). After the
training phase is finished clusters are named using original strings. Data in table
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1 are projected in a 2 − d surface, figure 1 shows such projection. In this case we
can observe that there is a clear separation among the 7 different clusters. This is a
simple projection, since it seems that some clusters are mixed, we can use the Sammon
projection to obtain a better data projection.

4. Networks of Evolutionary Processors
with Filtered Connections

We consider that Artificial Neural Networks (ANN ) and Networks of Evolutionary
Processors (NEP) [11, 14] are the present and the future of connectionist models.
Both of them are based on the idea of simple processors that communicate in order
to achieve a global objective. But there are two important facts that must be taken
into account:

• ANN are numeric models while NEP are symbolic ones.
• There exists a learning algorithm that control the ANN behavior in order to

achieve a desired result while NEP do not incorporate any kind of learning
paradigm.

Some ideas of ANN can be translated into a NEP architecture since ANN are con-
sidered, in the literature, a good model to solve non conventional problems. Following
this point of view some kind of learning can be added to a NEP to obtain a more
general model than simple NEP. Among all the neural networks architectures unsu-
pervised neural networks, called Self Organizing Maps ( SOM), are the most suitable
one to translate into a NEP.

First of all, the learning concept in self-organizing maps are explained in order
to translate such ideas to a NEP, then a model with filtered connections is shown to
finally include learning in NEP models.

Main idea in NEPs is based on the fact that filters are inside processors in order
to control what objects can pass through connections, but these filters make complex
proccessors. If such filters are in connections, instead in processors, the simplicity of
processors will increase compare to classical NEPs.

A network of evolutionary processors with filtered connections of size n is a con-
struct Γ = (V, N1, N2, · · · , Nn, G), where V is an alphabet and for each 1 ≤ i ≤ n,
Ni = (Mi, Ai) is the i-th evolutionary node processor of the network. The parameters
of every processor are:

• Mi is a finite set of evolution rules (substitution, deletion or insertion rules).
• Ai is a finite set of strings over V . The set Ai is the set of initial strings in the

i-th node. Actually, in what follows, we consider that each string appearing in
any node at any step has an arbitrarily large number of copies in that node, so
that we shall identify multisets by their supports.

Finally, G = ({N1, N2, · · · , Nn}, (E,F )) is an directed graph called the underlying
graph of the network. The edges of G, that is the elements of (E, F ), are given in the
form (ei, fi) where fi is the filter associated to connection ei. Elements in F are just
object sets, an element w pass the filter in fi if w ∈ fi. The complete graph with n
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vertices is denoted by Kn. By a configuration (state) of an NEP as above we mean
an n-tuple C = (L1, L2, · · · ., Ln), with Li ⊆ V ∗ for all 1 ≤ i ≤ n. A configuration
represents the sets of strings (remember that each string appears in an arbitrarily
large number of copies) which are present in any node at a given moment; clearly the
initial configuration of the network is C0 = (A1, A2, · · · , An).

A configuration can change either by an evolutionary step or by a communicating
step. When changing by an evolutionary step, each component Li of the configuration
is changed in accordance with the evolutionary rules associated with the node i. When
changing by a communication step, each node processor Ni sends all copies of the
strings it has to all the node processors connected to Ni and receives all copies of the
strings sent by any node processor connected with Ni (providing that all sent/received
information pass filters in connections).

Theorem 3. The class of languages accepted (decided) by NEPs equals the class
of languages accepted (decided) by NEPFCs, and they are both equal to the class
of recursively enumerable languages (recursive languages, respectively) [12, 15]. Re-
mark: the class of problems solved by NEPs is equal to the class of problems solved by
NEPFCs [13].

The behavior of the two models is really similar due to their definitions. Also,
in [12] and [13] the authors show that the main complexity/computability results
holding for NEPs also hold for NEPFCs. Thus, the considerations on how NEPFCs
with learning behave hold easily, with similar proofs as in the case of NEPs.

Theorem 4. A NEPFC with m processors and less than c = 2m connections can
not be transformed into an equivalent NEP.

Each c connection is an equation with two unknows, so there are 2c unknows
(input and output filters in NEPs) and there exists 2m filters to compute. So if the
c < 2m the system has infinite solutions but the behaviour will not be the same in
all cases. If c = 2m the system has only one solution, and if c > 2m the system has
only one solution.

Therefore, if NEPs and NEPFCs are equivalent under some constraints then all
theorems in NEPs are valid for NEPFC. This new model can solve NP-problems in
linear time [12]. Moreover, a little discussion should be made regarding on what we
understand by solving a problem with NEPs/NEPFCs [16].

5. Learning with Filtered Connections

NEPs and NEPFCs can be consired universal models since they were proven to
be so in the above mentioned references [14, 12]. The great disadvantage is that a
given NEP/NEPFC can olny solve a given problem, if it is necessary to solve another
problem (maybe a little variation) then another diferent NEP/NEPFC has to be
implemented. The idea of learning tries to undertake such disadvantage proposing a
model able to solve diferent kinds of problems (that is a general class of problems).
Learning proposed here is based on the self organizing maps describe above.
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Let w a string object where w = a1a2 · · · an. Distance between two objects
δ(wi, wj) can be computed as the length of symbol z = wi ∧ wj .

A learning stage can be added to NEPFCs in the following way:

• if an object pass a filter in a given direction → then the filter in the other
direction ← is modified in order to avoid this object to come back.

• if an object does not pass a filter in a given direction → then the filter in the
other direction ← is modified in order to permit this object to go forward.

An object w in a NEPFC with a learning stage ∆ will pass through a connection c
if

∑
i δ(w, xi) < ∆, where xi ∈ fc and ∆ is the threshold of the learning algorithm.

If the object succefully pass the filter → then this object w will be added to fc on
the other direction ←. If object w does not pass the filter → then it will be added to
filter ←.

As NEPs, NEPFC with learning are non deterministic models and they also are
massive parallel models that one reason why they can solve NP-problems in linear
time.

There are some open problems that are part of our future research:

• Can NEPFCs with learning solve NP-problems? Probably yes, since their be-
havior is similar to NEPs.

• Are NEPFCs with learning and ∆ = 0 equivalent to NEPFCs? And to NEPs?
• If previous question is afirmative, then what is the maximum value of ∆ to

obtain equivalent models?

6. Simulation Results: 3-Colorability Problem

A software tool has been coded in order to solve the 3-colorability problem. This
software uses the Java threaded model to get a massive parallel simulation of NEPs.
All concurrent access to objects are safe thread due to the implementation of object
locks. All processors, rules and filters run in a separated thread and have been
synchronized via software patterns. It is clear that this simulation does not achieve
a linear computation time O(m + n) since it has been run on a sequential machine.
But it opens up a testing platform of theorems concerning NEP properties.

Fig. 2. 3-colorability problem that has

been solved using a massive paralell NEP.
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Here it is the final configuration of the system at the last node of the network
after the filtering process done in previous nodes which is the solution to the given
problem in Figure 1.

Processor 16 : Objects: (12) [

rAbCgDbE, gAbCrDbE, gAbCrDrE, rAgCbDgE, bAgCrDgE, rAgCbDbE,

rAbCgDgE, bAgCrDrE, bArCgDrE, gArCbDrE, bArCgDgE, gArCbDbE

]

Where {XY |X ∈ {r(ed), g(reen), b(lue)}, Y ∈ {a, c, d, e}} codes the color of the
cities, that is, X means the color of the city Y in the map. Table below shows all
objects in processor N0 after applying the evolution rules. Such processor has 256
objects, each one is obtained using a given rule. This object set is –theoretically–
obtained in n = 4 steps and contains all possible combinations, solutions or not, to
the given problem.

Processor 0 : Objects: (256) [ acde, rAcde, gAcde, bAcde, acrDe, acgDe, acbDe, arCde,

rAcrDe, rAcgDe, rAcbDe, gAcrDe, gAcgDe, gAcbDe, bAcrDe, bAcgDe, bAcbDe, arCrDe, arCgDe,

arCbDe, acdrE, acdgE, agCde, abCde, rArCde, rAgCde, rAbCde, gArCde, gAgCde, gAbCde, bArCde,

bAgCde, bAbCde, agCrDe, abCrDe, agCgDe, abCgDe, agCbDe, abCbDe, rArCrDe, rAgCrDe, rAbCrDe,

rArCgDe, rAgCgDe, rAbCgDe, rArCbDe, rAgCbDe, rAbCbDe, gArCrDe, gAgCrDe, gAbCrDe, gArCgDe,

gAgCgDe, gAbCgDe, gArCbDe, gAgCbDe, gAbCbDe, bArCrDe, bAgCrDe, bAbCrDe, bArCgDe, bAgCgDe,

bAbCgDe, bArCbDe, bAgCbDe, bAbCbDe, arCdrE, agCdrE, abCdrE, arCdgE, agCdgE, abCdgE, acdbE,

rAcdrE, rAcdgE, rAcdbE, gAcdrE, gAcdgE, gAcdbE, bAcdrE, bAcdgE, bAcdbE, acrDrE, acrDgE,

acrDbE, acgDrE, acgDgE, acgDbE, acbDrE, acbDgE, acbDbE, arCdbE, rAcrDrE, rAcrDgE, rAcrDbE,

rAcgDrE, rAcgDgE, rAcgDbE, rAcbDrE, rAcbDgE, rAcbDbE, agCdbE, abCdbE, rArCdrE, rAgCdrE,

rAbCdrE, rArCdgE, rAgCdgE, rAbCdgE, rArCdbE, rAgCdbE, rAbCdbE, gArCdrE, gAgCdrE, gAbCdrE,

gArCdgE, gAgCdgE, gAbCdgE, gArCdbE, gAgCdbE, gAbCdbE, bArCdrE, bAgCdrE, bAbCdrE, bArCdgE,

bAgCdgE, bAbCdgE, bArCdbE, bAgCdbE, bAbCdbE, arCrDrE, agCrDrE, abCrDrE, arCrDgE, agCrDgE,

abCrDgE, arCrDbE, agCrDbE, abCrDbE, arCgDrE, agCgDrE, abCgDrE, arCgDgE, agCgDgE, abCgDgE,

arCgDbE, agCgDbE, abCgDbE, arCbDrE, agCbDrE, abCbDrE, arCbDgE, agCbDgE, abCbDgE, arCbDbE,

agCbDbE, abCbDbE, rArCrDrE, rAgCrDrE, rAbCrDrE, rArCrDgE, rAgCrDgE, rAbCrDgE, rArCrDbE,

rAgCrDbE, rAbCrDbE, rArCgDrE, rAgCgDrE, rAbCgDrE, rArCgDgE, rAgCgDgE, rAbCgDgE, rArCgDbE,

rAgCgDbE, rAbCgDbE, gAcrDrE, gAcrDgE, gAcrDbE, gAcgDrE, gAcgDgE, gAcgDbE, gAcbDrE, gAcbDgE,

gAcbDbE, bAcrDrE, bAcrDgE, bAcrDbE, bAcgDrE, bAcgDgE, bAcgDbE, bAcbDrE, bAcbDgE, bAcbDbE,

rArCbDrE, rArCbDgE, rArCbDbE, rAgCbDrE, rAgCbDgE, rAgCbDbE, rAbCbDrE, rAbCbDgE, rAbCbDbE,

gArCrDrE, gArCrDgE, gArCrDbE, gAgCrDrE, gAgCrDgE, gArCgDrE, gArCbDrE, gAgCgDrE, gAgCbDrE,

gAbCrDrE, gAbCgDrE, gAbCbDrE, gArCgDgE, gArCbDgE, gAgCgDgE, gAgCbDgE, gAbCrDgE, gAbCgDgE,

gAbCbDgE, gArCgDbE, gArCbDbE, gAgCrDbE, gAgCgDbE, gAgCbDbE, gAbCrDbE, gAbCgDbE, gAbCbDbE,

bArCrDrE, bArCgDrE, bArCbDrE, bAgCrDrE, bAgCgDrE, bAgCbDrE, bAbCrDrE, bAbCgDrE, bAbCbDrE,

bArCrDgE, bArCgDgE, bArCbDgE, bAgCrDgE, bAgCgDgE, bAgCbDgE, bAbCrDgE, bAbCgDgE, bAbCbDgE,

bArCrDbE, bArCgDbE, bArCbDbE, bAgCrDbE, bAgCgDbE, bAgCbDbE, bAbCrDbE, bAbCgDbE, bAbCbDbE ]

7. Conclusions and Future Work

In some applications, like molecular biology, a similarity measure is more natural
than distance and is preferred in comparing protein sequences. It is possible that such
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data can be successfully processed by self organizing neural networks. It can therefore
be concluded that similarity-based neural networks are a promising tool for processing
and analyzing non-metric data. This paper has proposed a string measure that can
be applied to self organizing maps with the possibility of new symbols generation.
Watson-Crick complementary concept was defined using such measure.

This paper has introduced the novel computational paradigm Networks of Evo-
lutionay Processors. Connectionists models such as Neural Networks can be taken
into account to develop NEP architecture in order to improve behaviour. As a future
research, learning concepts in neural networks can be adapted in a NEP architecture
provided the numeric-symbolic difference in both models.

Artificial Neural Networks as universal approximators, Transition P Systems and
Networks of Evolutionary Processors as NP-problem solvers are the main connection-
ist models in the field of Natural Computation. All of them are bio-inspired and try
to model biological process that happens in nature. This paper has proposed a new
model as a combination of NEPs and SOMs adding some kind of learning to NEPs.

There are a lof of open problems in grammar theory that need to be solved in order
to show the computational power of this model, but the possibility to compute NP-
problems is promising apart from the massive parallelization and non-determinism of
the model.
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