
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 12, Number 4, 2009, 440–454

A BIST Logic Design for MarchS3C
Memory Test BIST Implementation

1Petru CAŞCAVAL, 2Radu SILION, 3Doina CAŞCAVAL

Gheorghe Asachi Technical University of Iaşi, Romania
E-mail: {1cascaval, 2rsilion}cs.tuiasi.ro,

3cascaval@tex.tuiasi.ro

Abstract. A logic design for a possible built-in self-testing implementation

of a march test able to detect all static simple three-cell coupling faults in n

× 1 random-access memories (RAMs) is presented. Single–array single bit and

multiple–array single bit test architectures have been considered. The memory

test (MarchS3C [1]) needs 66n operations and is able to detect all realistic

simple (i.e. not linked) static three-cell coupling faults that have been shown to

exist in real designs, namely: state coupling faults, transition coupling faults,

write disturb coupling faults, read destructive coupling faults, deceptive read

destructive coupling faults, and incorrect read coupling faults. To reduce the

length of the test, only the coupling faults between physically adjacent memory

cells have been considered. The test assumes that the storage cells are arranged

in a rectangular grid and that the mapping from logical addresses to physical

cell locations is known completely.

Key words: Memory testing, static faults, fault primitive, three-cell cou-

pling faults, built-in self-testing.

1. Introduction

This article focuses on high performance memory testing having in view system
on chip (SoC) dedicated to critical applications, with high reliability and safety re-
quirements, in which the test confidence degree regarding to normal operation of
the embedded memory must be very high. In recent years, embedded memories are
the fastest growing segment of SoC. According to the 2001 International Technology
Roadmap for Semiconductor [2], today’s SoC are moving from logic dominant chips

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 441

to memory dominant chips, since future applications require a lot of memory. The
same idea is reiterated in [3]. The memory shared on the chip is expected to be about
94% in 2014. For this reason, the importance of memory testing increases.

Rapid developments in semiconductor technology have resulted in continuing growth
of larger and denser random-access memories on a single chip. With increasing den-
sities, certain types of faults harder-to-detect such as three-cell or even four-cell cou-
pling faults can not be ignored any more [4, 5]. Consequently, the test algorithms
are constrained by two conflicting requirements: to cover a wide variety of memory
faults harder-to-detect, and to reduce the number of memory operations in order to
allow large memories to be tested in an acceptable period of time. In addition, more
time is required to test memories because of their increasing size thus it is necessary
to identify more efficient tests, with the ability to detect complex faults, tests that
require test time on the order of n, where n denotes the number of locations of the
memory. In this work, the class of faults harder-to-detect that includes coupling faults
with three adjacent coupled cells has been considered.

BIST is a design-for-testability technique that places test functions physically on
chip with the circuit under test. System designers use BIST for periodic testing. This
requires incorporating a test process that guarantees the detection of all target faults
within a fixed time. Designers also implement on-line BIST with the goals of large
fault coverage and low fault latency. For critical or highly available systems, a com-
prehensive online-testing approach that covers all expected permanent, intermittent,
and transient faults is essential [6].

Two kinds of testing methods exist: random testing and deterministic testing.
Random testing is based on linear-feedback shift registers (LFSR) for pattern gen-
eration. An LSFR can also serve as a response monitor by counting the responses
produced by the tests. After receiving a sequence of test responses, an LSFR response
monitor forms a fault signature which is compared with a known good signature to
determine whether a fault is present. Deterministic testing is especially suited to
highly regular chips.

Since the RAM circuit has a regular structure, a deterministic testing is more
adequate than a random one. Taking into account the number of simultaneously
tested arrays and the number of simultaneously accessed bits within an array, Franklin
and Saluja [6] classified all the RAM-BIST test architectures into one of the four test
architectures: single-array single bit, single-array multiple bit, multiple-array single
bit, and multiple-array multiple bit. In this work only single-array single bit (SASB)
test architectures and multiple-array single bit test architectures (MASB) have been
considered. SASB test architectures are those in which a single array of the RAM
chip is tested at a time and a single bit of the tested array is accessed at a time.
MASB test architectures can be used if a memory chip is organized as a number of
independent arrays, allowing multiple arrays to be tested simultaneously. Ensuring
that fault coverage is sufficiently high and the number of tests is sufficiently low are
the main problems with a BIST implementation [5].

In this paper we focus on the model of all static simple three–cell coupling faults,
as defined in [1]. This is the largest model of three-cell coupling that includes all the
faults that have been shown to exist in real designs, namely: state coupling faults,

442 P. Caşcaval et al.

transition coupling faults, write disturb coupling faults, read destructive coupling
faults, deceptive read destructive coupling faults, and incorrect read coupling faults
[4, 7]. For a BIST-RAM logic design, the memory test MarchS3C that covers entirely
this fault model has been considered [1].

The remainder of this paper is organized as follows. Section 2 presents a memory
fault classification based on the concept of fault primitives. The fault primitives for
the model of all static three-cell coupling are presented in Section 3. The memory
test MarchS3C is presented briefly in Section 4. To compare MarchS3C with other
published memory tests, simulation results are also presented in Section 5. A logic
design for a possible implementation of this march test in a BIST-RAM device is
discussed in Section 6. Final remarks regarding this work are presented in Section 7.

2. Primitives and a Memory Fault Classification

An operation sequence that results in a difference between the observed and the ex-
pected memory behaviour is called a sensitizing operation sequence (S). The observed
memory behaviour that deviates from the expected one is called faulty behaviour (F).
In order to specify a certain fault, one has to specify the S, together with the corre-
sponding faulty behaviour F, and the read result (R) of S in case it is a read operation.
The combination of S, F and R for a given memory failure is called a Fault Primitive
(FP). The concept of FPs allows for establishing a complete framework of all memory
faults. Some classifications of FPs can be made based on different and independent
factors of S.
a) Depending on the number of simultaneous operations required in the S, FPs are
classified into single-port and multi-port faults.

• Single-ports faults: These are FPs that require at the most one port in order to
sensitize a fault. Note that single-port faults can be sensitized in single-port as
well as in multi-port memories.

• Multi-port faults: These are FPs that can only sensitize a fault by performing
two or more simultaneous operations via the different ports.

b) Depending on the number of sequential operations required in the S, FPs are
classified into static and dynamic faults. Let #O be the number of different operations
carried out sequentially in a S.

• Static faults: These are FPs which sensitize a fault by performing at the most
one operation in the memory (#O=0 or #O=1);

• Dynamic faults: These are FPs that perform more than one operation sequen-
tially in order to sensitize a fault (#O > 1).

c) Depending on the way FPs manifest themselves, they can be divided into simple
faults and linked faults.

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 443

• Simple faults: These are faults which cannot be influenced by another fault.
That means that the behaviour of a simple fault cannot change the behaviour
of another one; therefore masking cannot occur.

• Linked faults: These are faults that do influence the behaviour of each other.
That means that the behaviour of a certain fault can change the behaviour of
another one such that masking can occur. Note that linked faults consists of
two ore more simple faults.

In this work, single-port, static, simple faults are considered. From here on, the
term ‘fault’ refers to a single-port, static, simple fault.

The following notations are usually used to describe operations on RAMs :

• r0 (r1) denotes a read 0 (1) operation from a cell;

• r denotes a read operation from a cell when the expected value is not specified;

• w0(w1) denotes a write 0 (1) operation into a cell;

• 0w0 (1w1) denotes a write 0 (1) operation to a cell which contains a 0(1) – a
non-transition write operation when the logical value of the cell does not change;

• w denotes a non-transition write operation into a cell when the logical value of
the cell is not specified;

• 0w1 (1w0) denotes an up (down) transition write operation;

• w c denotes a transition write operation into a cell when the old logical value of
the cell and its complement are not specified;

• ↑ (↓) denotes an up (down) transition due to a certain sensitizing operation.

A FP is usually denoted as < S/F/R > [6], where:

• S describes the value/operation sensitizing the fault, S ∈ {0, 1, r0, r1, 0w0,
1w1, 0w1, 1w0};

• F describes the value of the faulty (victim) cell (v-cell), F ∈ {0, 1, ↑, ↓};
• R describes the logical value which appears at the output of the memory if the

sensitizing operation applied to the v-cell is a read operation, R ∈ {0, 1, −}.
The symbol ‘−’ in R means that the output data is not applicable; for example,
if S=0w0, then not data will appear at the memory output, and therefore R is
replaced by a ‘−’.

RAM faults can also be divided into single-cell and multi-cell faults. Single-cell
faults consist of FPs involving a single cell, while multi-cell faults consists of FPs
involving more than one cell. As concerns the multi-cell faults (also called coupling
faults), we restrict our analysis to the class of three-cell FPs (i.e. three-cell coupling
faults).

444 P. Caşcaval et al.

3. All Static Three-Cell Coupling Faults

Based on the notations previously defined, a three-cell FP is presented as
< S/F/R > =< Sa1 ; Sa2 ;Sv/F/R >a1, a2, v, where Sa1, Sa2 and Sv are the sen-
sitizing operation (or state) sequences performed on the a1-cell and a2-cell (aggressor
cells), and on the v-cell (victim cell), respectively. The a1-cell and a2-cell are the cells
to which the sensitizing operation (or state) should be applied in order to sensitize
the fault, while the v-cell is the cell where the fault appears. Note that Sa1, Sv∈{0,
1, r0, r1, 0w0, 1w1, 0w1, 1w0}, whereas Sa2∈{0, 1}. As presented in Table 1, there
are 72 FPs compiled into seven FFMs, as defined in [7], namely:

• state coupling faults (CFst);

• disturb coupling faults (CFds);

• transition coupling faults (CFtr);

• write destructive coupling faults (CFwd);

• read destructive coupling faults (CFrd);

• deceptive read destructive coupling faults (CFdrd);

• incorrect read coupling faults (CFir).

For example, three cells are said to have a disturb coupling fault if an operation
(read, transition or non-transition write) performed on the a1-cell causes the v -cell
to flip, when a2-cell is in a given state; the FP defined in the row 9 shows that a
read 0 operation performed on a1-cell causes the v -cell to flip from 0 to 1, when the
a2-cell is in 0 state. Note that, the number of fault primitives is equal to the number
of arcs in the graph of states that describes the normal operations for three memory
cells (8 states × 9 arcs for each state). For this reason, the model is called “all static
three-cell coupling faults”.

Many test algorithms dedicated to such models of three-cell coupling faults have
been reported. Thus, a memory test that requires n + 32n log2 n operations is given
by Nair, Thatte, and Abraham (Algorithm B) [8]. A new test of length n+24n log2 n
is proposed by Papachristou and Sahgal [9]. Two more efficient test algorithms,
S3CTEST and S3CTEST2, are given by Cockburn [10]. These are tests of approxi-
mate length 5n log2 n + 22, 5n and 5n log2 n+5n [log2(1 + log2 n)] + 11n, respectively.
But, for the memory chips currently available, all these tests take a long time to
perform because the authors have assumed that the coupled cells can be anywhere in
the memory. For example, to test a 64 Mb memory chip assuming a cycle time of 60
ns, S3CTEST takes about 10 min 54s.

To reduce the length of the test, Caşcaval and Bennett have restricted the model
to the more realistic coupling faults that affect only the physically adjacent memory
cells [11]. Thus, for a set of three coupled cells {i, j, k}, six patterns denoted by P1,
P2, P3, P4, P5 and P6 are accepted, as shown in Fig. 1.

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 445

Table 1. List of three-cell FPs

446 P. Caşcaval et al.

i j i j

k P1 P2 k

 i

P3 i j k j P4

 k

i P5 P6 i

j k j k

Fig. 1. Patterns for three physically adjacent cells.

This model of three-cell coupling, which comprises only physically adjacent mem-
ory cells, is called reduced three-cell coupling. Under this hypothesis and for the
cases in which the mapping from logical addresses to physical cell locations is known
completely, they have devised a march test of length 38n, which covers this reduced
model of three-cell coupling faults. A new more efficient march test with 30n opera-
tions (MT-R3CF) dedicated to the same reduced model of three-cell coupling faults
is reported by Caşcaval, Bennett, and Huţanu [12]. But, all these test algorithms as-
sume that a memory fault can be sensitized only by a transition write operation into
a cell. Based on the model of all static two-cell coupling faults defined by Hamdioui,
van de Goor and Rodgers in [7], this model of three-cell coupling faults has been ex-
tended by considering other classes of faults, such as the faults sensitized by a read or
a non-transition write operation [1]. To cover this large fault model, called all static
reduced three-cell coupling faults, the memory test MarchS3C has been proposed.
This test is presented briefly in the following section.

4. The Memory Test MarchS3C

The march tests are the most popular and widely accepted deterministic test
algorithms because of their low temporal complexity, regular structures and their
ability to detect a wide variety of memory faults. Usually, a complete march test is
delimited by ‘{. . . }’ bracket pair, while a march element is delimited by the ‘(. . .)’
bracket pair. March elements are separated by semicolons, and the operations within
a march element are separated by commas. Note that all operations of a march
element are performed at a certain address, before proceeding to the next address.
The whole memory is checked homogeneously in either one of two orders: ascending
address order (⇑) or descending address order (⇓). When the address order is not
relevant, the symbol m is used.

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 447

The memory test we have considered for a possible BIST implementation is
MarchS3C. This memory test dedicated to the reduced model of all static three-
cell coupling is presented in Fig. 2, where I1, I2, I3, and I4 are sequences which
initialize the memory as follows: I1 initializes the odd columns with 0 and the even
columns with 1, and I3 vice versa (column-stripe data background); I2 and I4 initialize
the memory with a checkerboard data background and its complement, as illustrated
in Fig. 3.

 (w0) (0);

 (r, r, w, r, wc) (1)
; (r, r, w, r, wc) (2)

; (r, r, w, r, wc) (3)
; (r, r, w, r, wc) (4)

;

 I1
(5); (r, r, w, r, wc, r, r, w, r, wc) (6)

; I2
(7); (r, r, w, r, wc, r, r, w, r, wc) (8)

;

 I3
(9); (r, r, w, r, wc, r, r, w, r, wc) (10)

; I4
 (11); (r, r, w, r, wc, r, r, w, r, wc) (12)

;

 (ro) (13)

Fig. 2. The memory test MarchS3C.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

LSBCA I1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 I3 LSBCA

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

LSBRA LSBCA I2

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 I4 LSBRA LSBCA

Fig. 3. Memory initialization for the memory test MarchS3C.

This march test contains fourteen sequences as identified with a superscript (x),
where x∈{0, 1, . . . , 13}. The test sequences (5)-(12) form an alternating series of

448 P. Caşcaval et al.

background changes and march elements (as Cockburn proposed in [10]). Note that
when changing from one background to the next, only the cells that must change
states are written. Also, each write operation is preceded by a read operation. We
can observe in Fig. 4 that any background change affects only a half of the cells. Each
test sequence I1, I2, I3 or I4 performs n

2 read operations and n
2 write operations.

Consequently, MarchS3C needs 66n operations. This march memory test is able to
detect all the 72 FPs presented in Table 1 for all the six patterns illustrated in Fig. 1.

Circuit Under Test
M

U

X

Control Logic

Test generator

Response monitor

Inputs

Test pattern sequence
Error

Outputs

Self-Testing Logic

Fig. 4. Generic BIST scheme.

Regarding this march test, note that symbol ⇑ denotes an increasing address order,
from address 0 to n-1, as long as symbol ⇓ denotes a reverse address order, from
address n-1 to 0. Other permutations of the set of memory cell addresses decrease
the effectiveness of the march test.

5. Simulation Results

To compare MarchS3C with other published tests, simulation results are pre-
sented in this section. The following march tests have been considered for the simu-
lation study:

a) MT-R3CF [12] : {m(w0);⇑(r,w1);⇑(r,w0);⇓(r,w1);⇓(r,w0); I1;
⇑(r,wc,r,wc); I2; ⇑(r,wc,r,wc); I3; ⇑(r,wc,r,wc); I4; ⇑(r,wc,r,wc); m(r)}, where
I1, I2, I3 and I4 are sequences that initialize the memory as illustrated in Fig. 3.

b) Algorithm A [8] : {⇑(w0); ⇑(r0,w1); ⇑(r1); ⇑(r1,w0); ⇑(r0); ⇓(r0,w1); ⇓(r1);
⇓(r1,w0); ⇓(r0); ⇑(r0,w1,w0); ⇑(r0); ⇓(r0,w1,w0); ⇓(r0); ⇑(w1); ⇑(r1,w0,w1);
⇑(r1); ⇓(r1,w0,w1); ⇓(r1) }.

c) March G [13] : {m(w0); ⇑(r0,w1,r1,w0,w1); ⇑(r1,w0,r0,w1);
⇓(r1,w0,w1, w0); ⇓(r0,w1,r1,w0); ⇑(r0,w1,r1); ⇓(r1,w0,r0)}.

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 449

d) March S2C [14] : {m(w0);⇑(r0,w1,r1,r1,w1); ⇑(r1,w0,r0,r0,w0);
⇓(r0,w1,r1,r1,w1); ⇓(r1,w0,r0,r0,w0); m(r0); }.

e) March LA [15] : {m(w0); ⇑(r0,w1,w0,w1,r1); ⇑(r1,w0,w1,w0,r0);
⇓(r0,w1,w0,w1,r1); ⇓(r1,w0,w1,w0,r0); ⇓(r0)}.

f) March B [16] : {m(w0); ⇑(r0,w1,r1,w0,r0,w1); ⇑(r1,w0,w1);
⇓(r1,w0,w1,w0); ⇓(r0,w1,w0)}.

g) March LR [17] : {m(w0); ⇓(r0,w1); ⇑(r1,w0,r0,w1); ⇑(r1,w0);
⇑(r0,w1,r1,w0); ⇑(r0)}.

h) March U [18] : {m(w0);⇑(r0,w1,r1,w0);⇑(r0,w1); ⇓(r1,w0,r0,w1);
⇓(r1,w0)}.

All the six patterns P1, P2, . . . , P6 illustrated in Fig. 1, and all FPs presented
in Table 1 have been considered in this simulation study. Moreover, for each group
of coupled cells, composed of two aggressor cells (a1-cell and a2-cell) and a victim
cell (v -cell), six distinct combinations on the set {a1, a2, v} have been considered.
Consequently, 2952 (6×6×72) FPs have been simulated in order to evaluate the fault
coverage of this reduced model of three-cell coupling faults. The simulation results
are presented in Table 2.

Table 2. Fault coverage of this reduced model of three-cell coupling faults

Memory test Test length Fault coverage (%)

1 MarchS3C 66n 100

2 MT_R3CF 30n 56.73

3 Algorithm A 30n 46.30

4 March G 24n 44.91

5 MarchS2C 22n 53.40

6 March LA 22n 42.82

7 March B 17n 32.18

8 March LR 14n 43.52

9 March U 13n 42.59

As shown in Table 2, only MarchS3C is able to detect all FPs of simple three-cell
coupling faults.

6. A BIST Logic Design for MarchS3C

Generally, a circuit with BIST facilities has two operation modes: normal opera-
tion and test. In normal operation, the circuit receives its inputs from other modules

450 P. Caşcaval et al.

and performs the function for which it was designed. In the test mode, a test gen-
erator applies a sequence of test patterns to the memory, and a response monitor
evaluates the test responses as illustrated in Fig. 4.

For the memory test MarchS3C, a BIST logic with the block diagram presented
in Fig. 5 is proposed.

memory address
Memory circuit

RA CA

(Up/Dn Counters)

Address generation logic

LSBRA LSBRC

End of

 Sequence

(EOS)

InitZero

InitOne

Up RA

Up CA

Dn RA

Dn CA

data buffer

data

comparator

Test Sequence

Counter (TSC)
Reset Up TSC

data

generator

LSBRA

LSBRC

Data generation &

response verification logic

Error

Microcode control logic
Start

Clock

State variables (TS, EOS, Error)

Control variables (R/W, Invert, …)

Test Result

End of Test

Invert

R/W

R/W

0 no error detected

Result F/F

State F/F

Test Result

End of Test

1 failed chip

1 test running on

0 test finished

TS

Fig. 5. The block diagram of BIST logic for the memory test MarchS3C.

The BIST logic is composed of three parts: address–generation logic, data–generation
and response–verification logic, and microcode control logic.

A. Address–generation logic

The address generation logic is composed of two up/down counters, for row address
(RA) and column address (CA), respectively. Each address counter can be initialised
with 0 (InitZero) or 1 (InitOne) in all bit locations. The memory is checked in
ascending or descending order, so that, depending on the test sequence (TS), the
control logic increments (Up) or decrements (Dn) one of the address counters, RA
or CA.

B. Data generation and response-verification logic

The data-generation logic supplies data to be written in the memory and the
expected data for response monitoring. An unique logic to generate both data for
writing operations and expected data for response monitoring can be used. Note that,
except on the first initialisation (w0) and the final checking of the memory (r0), the
test algorithm is composed of two kinds of march elements, (r, r, w, r, w c) and (r, r, w,

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 451

r, w c, r, r, w, r, w c). Every write operation into a cell is preceded by a read operation.
The expected data in the first read operation of a cell is presented in Table 3, where
LSBCA and LSBRA denote the less significant bit of the column address of the cell,
and the less significant bit of the row address of the cell, respectively (Fig. 3).

Table. 3. Expected data in the first read operation of a cell

Test sequence (TS) Expected data

(1) 0

(2) 1

(3) 0

(4) 1

(5) 0

(6) CALSB

(7) CALSB

(8) RACA LSBLSB

(9) RACA LSBLSB

(10) CALSB

(11) CALSB

(12) RACA LSBLSB

(13) RACA LSBLSB

Data generator is basically composed of a multiplexor with input variables in ac-
cordance with the expected data presented in Table 3, and a test sequence counter
(TSC) that supplies the selection inputs. The logic variable Invert is used to com-
mand the XOR gate for changing the data bit generated.

C. Microcode control logic

The control logic initiates and controls the testing process. The control flow of
the test algorithm MarchS3C is presented in Fig. 6.

In Fig. 6 the following notations are used to denote specific operations performed
on the current memory cell:

• O (w0) − for the first initialization;

• O (shortME) − for the march element (r, r, w, r, w c);

• O (longME) − for the march element (r, r, w, r, w c, r, r, w, r, w c);

• O (r0) − for the final checking.

452 P. Caşcaval et al.

Fig. 6. Control flow for the memory test MarchS3C.

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 453

7. Final Remarks

We are unaware of other memory test able to detect all FPs of this large model
of three-cell coupling faults. To cover these harder-to-detect faults, MarchS3C uses
multiple data backgrounds: a solid, a column−stripe, and a checkerboard. Although
MarchS3C uses different patterns for memory initialization, the logic design we have
proposed for a possible built-in self-testing implementation is not so complicated.

Regarding the BIST logic design for a MASB architecture, another response ver-
ification method is comparing the outputs of symmetrically placed bits in the tested
arrays. An advantage of the parallel comparison method is that the expected values
need not be generated.

References

[1] CAŞCAVAL P., CAŞCAVAL D., March Test for a Reduced Model of All RAM Static
3-Cell Coupling Faults, Bul. Inst. Polit. Iaşi, Tom LIII (LVII), Autom. and Comput.,
pp. 87–96, 2007.

[2] ALLAN A. et al., 2001 International Technology Roadmap for Semiconductors, Com-
puters, 35 (1), pp. 42–53, 2002.

[3] HAMDIOUI S., AL-ARS Z., JIMENEZ J., CALERO J., PPM Reduction on Embedded
Memories in System on Chip, Proc. IEEE European Test Symp. (ETS’07), Freiburg,
Germany, May 2007, pp. 85–90.

[4] HAMDIOUI S., Testing Static Random Access Memories: Defects, Fault Models and
Test Patterns, Kluwer Academic Publishers, Norwell, USA, 2004.

[5] ADAMS R.D., High Performance Memory Testing, Kluwer Academic Publishers, Nor-
well, USA, 2003.

[6] FRANCKLIN M., SALUJA K., Built-in Self Testing of RAMs, IEEE Computer, 23
(10), pp. 45–56, 1990.

[7] HAMDIOUI S., VAN DE GOOR A.J., RODGERS M., March SS: A Test for All Static
Simple RAM Faults, Proc. of 10th IEEE Int. Workshop on Memory Technology, Design
and Testing, pp. 95–100, Isle of Bendor, France, July, 2002.

bibitemnair NAIR R., THATTE S., ABRAHAM J., Efficient Algorithms for Test-
ing Semiconductor Random-Access Memories, IEEE Trans. on Computers, C-27 (6),
pp. 572–576, 1978.

[8] PAPACHRISTOU C., SAHGAL N., An Improved Method for Detecting Functional
Faults in Semiconductor Random-Access Memories, IEEE Trans. on Computers, C-34
(2), pp. 110–116, 1985.

[9] COCKBURN B.F., Deterministic Testing for Detecting Single V-Coupling Faults in
RAMs, Journal of Electronic Testing, Theory and Applications, 5 (1), pp. 91–113,
1994.

[10] CAŞCAVAL P., BENNETT S., Efficient March Test for 3-Coupling Faults in Random-
Access Memories, Microprocessors and Microsystems, 24 (10), pp. 501–509, 2001.

[11] CAŞCAVAL P., BENNETT S., HUŢANU C., Efficient March Tests for a Reduced
3-Coupling and 4-Coupling Faults in Random-Access Memories, Journal of Electronic
Testing, Theory and Applications, 20 (3), pp. 227–243, 2004.

454 P. Caşcaval et al.

[12] VAN DE GOOR A.J., Using March Tests to Test SRAMs, IEEE Design and Test of
Computers, 10 (1) pp. 8–14, 1993.

[13] CAŞCAVAL P., SILION R., STAN A., MarchS2C: A Test for All Static 2-Cell RAM
Coupling Faults, Bul. Inst. Polit. Iaşi, Tom. LII (LVI), Fasc. 1–4, Autom. and Comput.,
pp. 79–86, 2006.

[14] VAN DE GOOR A.J. et al., March LA: A Test for Linked Memory Faults, Proc. of
European Design and Test Conference, pp. 627–634, Paris, France, 1999.

[15] SUK D., REDDY S., Test Procedures for a Class of Pattern-Sensitive Faults in Semicon-
ductor Random-Access Memories, IEEE Trans. on Computers, C-29 (6), pp. 419–429,
1980.

[16] YARMOLIK V.N., VAN DE GOOR A.J., GAYDADJIEV G.N., MIKITJUK V.G.,
March LR: A test for realistic linked faults, Proc. 14th IEEE VLSI Test Symp. (VTS’96),
pp. 272–280, 1996.

[17] VAN DE GOOR A.J., GAYDADJIEV G.N., March U: A Test for All Unlinked Memory
Faults, IEE Proc. of Circuits Devices and Systems, 144 (3), pp. 155–160, 1997.

