On Dense Graphs Having Minimum Randić Index

Ioan TOMESCU, Ruxandra MARINESCU-GHEMECI, Gabriela MIHAI
Faculty of Mathematics and Computer Science,
University of Bucharest, Str. Academiei 14, 010014 Bucharest, Romania
E-mail: ioan@fmi.unibuc.ro, veruxy@yahoo.com, criogab@yahoo.com

Abstract

In this paper all graphs G of order n and minimum degree $\delta(G)=k$ having minimum Randić index $R(G)$ are determined for $k \geq\lfloor n / 2\rfloor$. Each extremal graph is the join between a regular graph of order $n-s$ and a complete graph of order s (where $s \in\{n / 2,(n+2) / 2,(n-2) / 2\}$ for n even and $s \in\{(n+1) / 2,(n-1) / 2\}$ for n odd). This yields an alternative proof in the case of dense graphs to that proposed by Li, Liu and Liu [5] who very recently solved a long-standing conjecture on Randić index. Also, the minimum value of this index in the class of graphs of order n and $\delta(G)=k$ is determined for $k \geq(n-1) / 2$.

Key words: Randić index; complete graph; regular graph; non-linear programming model; graph join.

1. Introduction

The Randić index $R(G)$ of a graph G without isolated vertices was introduced in 1975 by Milan Randić under the name of "branching index" [9] as follows:

$$
R(G)=\sum_{u v \in E(G)}(d(u) d(v))^{-1 / 2}
$$

where $d(x)$ denotes the degree of a vertex $x \in V(G)$. The Randić index is also called "Randić connectivity index" or "connectivity index" [10].

Randić proposed this index in order to quantitatively characterize the degree of branching of the molecular skeleton, which is a critical factor for some physicochemical properties of alcanes. Let $G(n, k)$ be the set of graphs without loops or multiple edges having n vertices and the minimum degree $\delta(G)=k$; the maximum degree will be denoted by $\Delta(G)$.

Fajtlowicz mentioned [4] that Bollobás and Erdös asked for the minimum value of the Randić index for graphs $G \in G(n, k)$. The solution of this problem turned out to be difficult.

For two vertex disjoint graphs, G and H, let $G+H$ denote their join, i. e., the graph obtained by joining by edges every vertex of G with all vertices of H; we shall also denote by $\overline{K_{n}}$ the complement of K_{n}, which consists of n isolated vertices.

In [2] Bollobás and Erdös solved the problem for $k=1$ and proved that the extremal graph is unique and it coincides to $K_{1, n-1}=\overline{K_{n-1}}+K_{1}$; for $k=2$ the problem was settled in [3] and the extremal graph is $\overline{K_{n-2}}+K_{2}$. Delorme, Favaron and Rautenbach also gave a conjecture about this problem in [3]:
In the set of graphs G of order n with $\delta(G) \geq k$ the unique extremal graph is $\overline{K_{n-k}}+$ K_{k}; this conjecture is valid only for $k \leq n / 2$ (see also [1]). Pavlović [7] using a quadratic programming approach and Kuhn-Tucker theorem showed that in the class $G(n,\lfloor n / 2\rfloor)$ the unique extremal graph is $\overline{K_{n-\lfloor n / 2\rfloor}}+K_{\lfloor n / 2\rfloor}$.

In this paper, using the quadratic programming model for this problem proposed by Pavlović and Divnić [8] and discrete optimization methods it is shown that every extremal graph in the class $G(n, k)$ is the join between a regular graph and a complete graph (of order $n / 2,(n+2) / 2$ or $(n-2) / 2$ for n even and $(n+1) / 2$ or $(n-1) / 2$ for n odd) for every $k \geq\lfloor n / 2\rfloor$. These extremal graphs agree with the graphs found by Li, Liu and Liu [5] who determined by a different method all extremal graphs in $G(n, k)$ for $1 \leq k \leq n-1$.

2. Nonlinear programming model of Pavlović and Divnić

For a graph G of order n without loops or multiple edges denote by $\delta=\delta(G), \Delta=$ $\Delta(G), n_{i}$ the number of vertices of degree i for $\delta \leq i \leq \Delta\left(n_{\delta}+n_{\delta+1}+\ldots+n_{\Delta}=n\right)$ and by $x_{i, j} \geq 0$ the number of edges joining the vertices of degrees i and $j(\delta \leq i, j \leq \Delta)$. Then

$$
R(G)=\sum_{\delta \leq i \leq j \leq \Delta} \frac{x_{i, j}}{\sqrt{i j}}
$$

and $\sum_{\substack{j=\delta \\ j \neq i}}^{\Delta} x_{i, j}+2 x_{i, i}=i n_{i}$ for $\delta \leq i \leq \Delta ; x_{i, j} \leq n_{i} n_{j}$ for $\delta \leq i<j \leq \Delta ; x_{i, i} \leq\binom{ n_{i}}{2}$ for $\delta \leq i \leq \Delta ; x_{i, j}=x_{j, i}$ are nonnegative integers for $\delta \leq i \leq j \leq \Delta$.

We can associate to the problem of minimizing $R(G)$ the following nonlinear minimization problem:

$$
\min r\left(x_{\delta, \delta}, \ldots, x_{\Delta, \Delta}\right)=\sum_{\delta \leq i \leq j \leq \Delta} \frac{x_{i, j}}{\sqrt{i j}}
$$

subject to

$$
\begin{gather*}
\sum_{\substack{j=\delta \\
j \neq i}}^{\Delta} x_{i, j}+2 x_{i, i}=i z_{i} \text { for } \delta \leq i \leq \Delta \\
z_{\delta}+z_{\delta+1}+\ldots+z_{\Delta}=n \tag{1}\\
x_{i, j} \leq z_{i} z_{j} \text { for } \delta \leq i<j \leq \Delta \\
x_{i, i} \leq\binom{ z_{i}}{2} \text { for } \delta \leq i \leq \Delta
\end{gather*}
$$

$$
x_{i, j}=x_{j, i} \text { and } z_{i} \text { are nonnegative integers for } \delta \leq i \leq j \leq \Delta
$$

Function r can also be written as [8]:

$$
r\left(x_{\delta, \delta}, \ldots, x_{\Delta, \Delta}\right)=\frac{n}{2}-\frac{1}{2} \sum_{\delta \leq i<j \leq \Delta}\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{j}}\right)^{2} x_{i, j}
$$

The problem of minimization of r becomes the problem of maximization of

$$
\gamma\left(x_{\delta, \delta+1}, \ldots, x_{\Delta-1, \Delta}\right)=\sum_{\delta \leq i<j \leq \Delta}\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{j}}\right)^{2} x_{i, j}
$$

By denoting $y_{i, j}=z_{i} z_{j}-x_{i, j}$ for $\delta \leq i<j \leq \Delta$ and $y_{i, i}=\binom{z_{i}}{2}-x_{i, i}$ for $\delta \leq i \leq \Delta$ we get

$$
\gamma\left(x_{\delta, \delta+1}, \ldots, x_{\Delta-1, \Delta}\right)=\gamma_{1}\left(z_{\delta}, \ldots, z_{\Delta}\right)+\gamma_{2}\left(y_{\delta, \delta+1}, \ldots, y_{\Delta-1, \Delta}\right)
$$

where $\gamma_{1}=\sum_{\delta \leq i<j \leq \Delta}\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{j}}\right)^{2} z_{i} z_{j}$ and $\gamma_{2}=-\sum_{\delta \leq i<j \leq \Delta}\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{j}}\right)^{2} y_{i, j}$.
We have $y_{i, j} \geq 0$ for $\delta \leq i<j \leq \Delta ; y_{i, i} \geq 0$ for $\delta \leq i \leq \Delta$ and $y_{i, j}=y_{j, i}$ are integers for $\delta \leq i \leq j \leq \Delta$. It is clear that

$$
\max \gamma \leq \max \gamma_{1}+\max \gamma_{2}
$$

We have $\max \gamma_{2}=0$ and this holds if and only if $y_{i, j}=0$ for $\delta \leq i<j \leq \Delta$, or equivalently, $x_{i, j}=z_{i} z_{j}$ for all indices $\delta \leq i<j \leq \Delta$.

In the next section we shall consider the problem of maximizing γ_{1} and all sequences $\left(z_{\delta}, \ldots, z_{\Delta}\right)$ reaching the first and the second maximum values of γ_{1} will be found. These sequences which have graphical realizations also reach the maximum of γ_{2}, hence the maximum of γ.

3. A technical lemma

Denote $\varphi(n)=\max _{\substack{n_{1}+n_{2}=n \\ n_{1}, n_{2} \in \mathbb{Z}}} n_{1} n_{2}$; it follows that $\varphi(n)=n^{2} / 4$ for n even $\left(n_{1}=\right.$ $\left.n_{2}=n / 2\right)$ and $\varphi(n)=\left(n^{2}-1\right) / 4$ for n odd $\left(\left\{n_{1}, n_{2}\right\}=\{(n-1) / 2,(n+1) / 2\}\right)$. If $1 \leq \delta<\Delta \leq n-1, \delta, \Delta \in \mathbb{N}$, consider the function

$$
f\left(x_{\delta}, x_{\delta+1}, \ldots, x_{\Delta}\right)=\sum_{\delta \leq i<j \leq \Delta}\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{j}}\right)^{2} x_{i} x_{j}
$$

and the domains $D=\left\{\left(x_{\delta}, x_{\delta+1}, \ldots, x_{\Delta}\right): x_{i} \in \mathbb{N}\right.$ for $\left.\delta \leq i \leq \Delta, \sum_{i=\delta}^{\Delta} x_{i}=n\right\}$; $D_{1}=D \backslash\{(n / 2,0, \ldots, 0, n / 2)\}$ for n even and $D_{1}=D \backslash\{((n-1) / 2,0, \ldots, 0,(n+$ 1)/2), $((n+1) / 2,0, \ldots, 0,(n-1) / 2)\}$ for n odd.

Lemma 3.1. All points where f is maximum in D and D_{1}, respectively, are the following: i) If $n \geq 4$ is even, then $\max _{D} f\left(x_{\delta}, \ldots, x_{\Delta}\right)$ is reached for $(n / 2,0, \ldots, 0, n / 2)$ and $\max _{D_{1}} f\left(x_{\delta}, \ldots, x_{\Delta}\right)$ for $((n-2) / 2,0, \ldots, 0,(n+2) / 2)$ and $((n+2) / 2,0, \ldots, 0,(n-$ 2)/2); ii) If $n \geq 5$ is odd, then $\max _{D} f\left(x_{\delta}, \ldots, x_{\Delta}\right)$ is attained for $((n-1) / 2,0, \ldots, 0$, $(n+1) / 2)$ and $((n+1) / 2,0, \ldots, 0,(n-1) / 2)$ and $\max _{D_{1}} f\left(x_{\delta}, \ldots, x_{\Delta}\right)$ when $\left(x_{\delta}, \ldots x_{\Delta}\right)$ is located into the set $\{((n-3) / 2,0, \ldots, 0,(n+3) / 2),((n+3) / 2,0, \ldots, 0,(n-3) / 2)$, $((n-1) / 2,0, \ldots, 0,1,(n-1) / 2)\}$.

Proof. A. First we shall determine the maximum of $f\left(x_{\delta}, \ldots, x_{\Delta}\right)$ when $\left(x_{\delta}, \ldots, x_{\Delta}\right)$ $\in D$. If $x_{\delta+1}=\ldots=x_{\Delta-1}=0$ then

$$
f\left(x_{\delta}, \ldots, x_{\Delta}\right)=\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{\Delta}}\right)^{2} x_{\delta} x_{\Delta}
$$

and the result is obvious since $x_{\delta}+x_{\Delta}=n$.
Otherwise, denote by $i(\delta+1 \leq i \leq \Delta-1)$ the smallest index such that $x_{i} \geq 1$ and by $j(\delta+1 \leq j \leq \Delta-1)$ the greatest index such that $x_{j} \geq 1$; obviously $i \leq j$. Denote by α and β the operations consisting of replacing $x=\left(x_{\delta}, \ldots, x_{\Delta}\right) \in D$ by $x^{\prime}=\left(x_{\delta}, 0, \ldots, 0, x_{i}, \ldots, x_{j-1}, x_{j}-1,0, \ldots, 0, x_{\Delta}+1\right) \in D$ and by $x^{\prime \prime}=\left(x_{\delta}+\right.$ $\left.1,0, \ldots, 0, x_{i}-1, x_{i+1}, \ldots, x_{j}, 0, \ldots, 0, x_{\Delta}\right) \in D$, respectively. We have:

$$
\begin{gathered}
f\left(x^{\prime}\right)-f(x)=\left(\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}\right)^{2}\left(x_{j}-x_{\Delta}-1\right)+x_{\delta}\left(\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}\right)\left(\frac{2}{\sqrt{\delta}}-\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}\right) \\
+x_{i}\left(\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}\right)\left(\frac{2}{\sqrt{i}}-\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}\right)+x_{i+1}\left(\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}\right)\left(\frac{2}{\sqrt{i+1}}-\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}\right)+ \\
\ldots+x_{j-1}\left(\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}\right)\left(\frac{2}{\sqrt{j-1}}-\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}\right) .
\end{gathered}
$$

Since $\frac{2}{\sqrt{k}}-\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}>\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}$ for $k=\delta, i, i+1, \ldots, j-1$, we can write

$$
\begin{equation*}
f\left(x^{\prime}\right)-f(x) \geq\left(\frac{1}{\sqrt{j}}-\frac{1}{\sqrt{\Delta}}\right)^{2}\left(x_{\delta}+x_{i}+x_{i+1}+\ldots+x_{j}-x_{\Delta}-1\right) \tag{2}
\end{equation*}
$$

and this inequality is strict if at least one of $x_{\delta}, x_{i}, x_{i+1}, \ldots, x_{j-1}$ is different from zero. Similarly,

$$
\begin{gathered}
f\left(x^{\prime \prime}\right)-f(x)=\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}\right)^{2}\left(x_{i}-x_{\delta}-1\right)+x_{i+1}\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}\right)\left(\frac{1}{\sqrt{\delta}}+\frac{1}{\sqrt{i}}-\frac{2}{\sqrt{i+1}}\right)+ \\
\ldots+x_{j}\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}\right)\left(\frac{1}{\sqrt{\delta}}+\frac{1}{\sqrt{i}}-\frac{2}{\sqrt{j}}\right)+x_{\Delta}\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}\right)\left(\frac{1}{\sqrt{\delta}}+\frac{1}{\sqrt{i}}-\frac{2}{\sqrt{\Delta}}\right)
\end{gathered}
$$

which implies:

$$
\begin{equation*}
f\left(x^{\prime \prime}\right)-f(x) \geq\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}\right)^{2}\left(x_{i}+x_{i+1}+\ldots+x_{j}+x_{\Delta}-x_{\delta}-1\right) \tag{3}
\end{equation*}
$$

and this inequality is strict if at least one of $x_{i+1}, \ldots, x_{j}, x_{\Delta}$ is different from zero.
If $i=j$ we get

$$
\begin{equation*}
f\left(x^{\prime}\right)-f(x) \geq\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{\Delta}}\right)^{2}\left(x_{\delta}+x_{i}-x_{\Delta}-1\right) \tag{4}
\end{equation*}
$$

the inequality being strict if $x_{\delta} \geq 1$ and

$$
\begin{equation*}
f\left(x^{\prime \prime}\right)-f(x) \geq\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}\right)^{2}\left(x_{\Delta}+x_{i}-x_{\delta}-1\right) \tag{5}
\end{equation*}
$$

and this inequality is strict if $x_{\Delta} \geq 1$.
We shall prove that at least one of the differences $f\left(x^{\prime}\right)-f(x)$ and $f\left(x^{\prime \prime}\right)-f(x)$ is greater than zero, which implies that all sequences $\left(x_{\delta}, \ldots, x_{\Delta}\right) \in D$ realizing maximum of f satisfy $x_{\delta+1}=\ldots=x_{\Delta-1}=0$. Consider first the case when $i=j$. It is clear that if $x_{\delta}=x_{\Delta}=0$ then $f\left(x_{\delta}, \ldots, x_{\Delta}\right)=0$ which implies that $\left(0, \ldots, 0, x_{i}, 0, \ldots, 0\right)$ cannot maximize f. Otherwise, suppose that $x_{\delta} \geq 1$. If $x_{\delta}+x_{i}-x_{\Delta}-1 \geq 0$ then (4) is strict and it follows that $f\left(x^{\prime}\right)>f(x)$ and x cannot maximize f on D. Otherwise, $x_{\delta}+x_{i}-x_{\Delta}-1 \leq-1$. In this case $x_{\Delta} \geq x_{\delta}+x_{i}$, hence $x_{\Delta}+x_{i}-x_{\delta}-1 \geq 2 x_{i}-1 \geq 1$, which implies $f\left(x^{\prime \prime}\right)>f(x)$ and x also cannot maximize f. If $x_{\Delta} \geq 1$ the same conclusion follows since (5) is strict.

Suppose that $i<j$. In this case $x_{i}>0, x_{j}>0$ and both inequalities (2) and (3) are strict. If $x_{\delta}+x_{i}+\ldots+x_{j}-x_{\Delta}-1 \geq 0$ then from (2) it follows that $f\left(x^{\prime}\right)>f(x)$. Otherwise, $x_{\Delta} \geq x_{\delta}+x_{i}+\ldots+x_{j}$ and $x_{i}+\ldots+x_{j}+x_{\Delta}-x_{\delta}-1 \geq 2\left(x_{i}+\ldots+x_{j}\right)-1>0$, which implies $f\left(x^{\prime \prime}\right)>f(x)$ from (3).

Consequently, all sequences maximizing f have the form $\left(n_{1}, 0, \ldots, 0, n_{2}\right)$, where $n_{1}+n_{2}=n$; in this case

$$
f\left(n_{1}, 0, \ldots, 0, n_{2}\right)=\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{\Delta}}\right)^{2} n_{1} n_{2} \leq\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{\Delta}}\right)^{2} \varphi(n)
$$

and the conclusion follows.
B. Consider that $x=\left(x_{\delta}, \ldots, x_{\Delta}\right) \in D_{1}$. If $x_{\delta+1}=\ldots=x_{\Delta-1}=0$ then $f\left(x_{\delta}, \ldots, x_{\Delta}\right)=\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{\Delta}}\right)^{2} x_{\delta} x_{\Delta}$, where $x_{\delta}+x_{\Delta}=n$ and the result is obvious.

If $x_{\delta+1}+\ldots+x_{\Delta-1} \geq 2$ then we have seen that by an operation α or β we can find sequences $y, z \in D$ such that $f(x)<f(y)<f(z)$, hence x cannot maximize f on D_{1}. If $x_{\delta+1}+\ldots+x_{\Delta-1}=1$ we shall consider other two subcases: B1: n is even; B2: n is odd.

B1. If n is even we shall prove that x cannot maximize f if $x_{\delta+1}+\ldots+x_{\Delta-1}=1$, i.e., there exists an index $i, \delta+1 \leq i \leq \Delta-1$ such that $x_{i}=1$ and $x_{j}=0$ for every $\delta+1 \leq j \leq \Delta-1$ and $j \neq i$.

Let $k=\min \left(x_{\delta}, x_{\Delta}\right) \leq n / 2-1$. Without loss of generality suppose that $k=x_{\delta}$. If $k=n / 2-1$, then $x_{\delta}=n / 2-1$ and $x_{\Delta}=n / 2$. Applying transformation α we deduce that

$$
\begin{gathered}
f(n / 2-1,0, \ldots, 0, n / 2+1)-f(n / 2-1,0, \ldots, 0,1,0, \ldots, 0, n / 2)= \\
\left(\frac{n}{2}-1\right)\left(\frac{2}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{\Delta}}\right)\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{\Delta}}\right)-\frac{n}{2}\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{\Delta}}\right)^{2}= \\
\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{\Delta}}\right)\left(\frac{n-2}{\sqrt{\delta}}-\frac{n-1}{\sqrt{i}}+\frac{1}{\sqrt{\Delta}}\right) .
\end{gathered}
$$

We shall prove that

$$
\begin{equation*}
\frac{n-2}{\sqrt{\delta}}-\frac{n-1}{\sqrt{i}}+\frac{1}{\sqrt{\Delta}}>0 \tag{6}
\end{equation*}
$$

which will prove that $(n / 2-1,0, \ldots, 0,1,0, \ldots, 0, n / 2)$ cannot maximize f on D_{1}. We have

$$
\frac{n-2}{\sqrt{\delta}}-\frac{n-1}{\sqrt{i}}+\frac{1}{\sqrt{\Delta}} \geq \frac{n-2}{\sqrt{\delta}}-\frac{n-1}{\sqrt{\delta+1}}+\frac{1}{\sqrt{n-1}}
$$

Consider now the function $g(x)=\frac{n-2}{\sqrt{x}}-\frac{n-1}{\sqrt{x+1}}$, where $x \in[1, n-3]$. Its derivative $g^{\prime}(x)=\frac{1}{2}\left(\frac{n-1}{(x+1) \sqrt{x+1}}-\frac{n-2}{x \sqrt{x}}\right)$ is negative since this is equivalent to $x^{3}(n-1)^{2}<$ $(x+1)^{3}(n-2)^{2}$, or

$$
\begin{equation*}
x^{2}\left(x(2 n-3)-3(n-2)^{2}\right)-3(n-2)^{2} x-(n-2)^{2}<0 \tag{7}
\end{equation*}
$$

We deduce that $x(2 n-3)<3(n-2)^{2}$ for $x \leq n-3$ since $n-3<3(n-2)^{2} /(2 n-3)$ is equivalent to $n^{2}-3 n+3>0$ and this holds for $n \geq 4$. It follows that (7) is true, which implies that g is strictly decreasing on the interval $[1, n-3]$. We get $\frac{n-2}{\sqrt{\delta}}-\frac{n-1}{\sqrt{\delta+1}}+\frac{1}{\sqrt{n-1}} \geq \frac{n-2}{\sqrt{n-3}}-\frac{n-1}{\sqrt{n-2}}+\frac{1}{\sqrt{n-1}}$. It remains to show that

$$
\begin{equation*}
\frac{n-2}{\sqrt{n-3}}-\frac{n-1}{\sqrt{n-2}}+\frac{1}{\sqrt{n-1}}>0 \tag{8}
\end{equation*}
$$

for every $n \geq 4$. By elementary calculation we deduce that (8) is equivalent to $2(n-2)^{2} \sqrt{(n-1)(n-3)}>n^{3}-7 n^{2}+15 n-11$ for every $n \geq 4$. But $2(n-$ $2)^{2} \sqrt{(n-1)(n-3)}>2(n-2)^{2}(n-3)>n^{3}-7 n^{2}+15 n-11$ since the last inequality
is equivalent to $n^{3}-7 n^{2}+17 n-13>0$, which is true for $n \geq 4$. Consequently, (6) is true for every $1 \leq \delta<i<\Delta \leq n-1$ and $n \geq 4$.

If $k=x_{\delta} \leq n / 2-2$ it follows that $x_{\Delta} \geq n / 2+1$ and applying a transformation β we deduce from (5) that $f\left(x_{\delta}+1,0, \ldots, 0, x_{\Delta}\right)-f\left(x_{\delta}, 0, \ldots, 0,1,0, \ldots, 0, x_{\Delta}\right)>$ $3\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}\right)^{2}>0$ since $x_{\Delta}-x_{\delta} \geq 3$. In this case $f\left(x_{\delta}+1,0, \ldots, 0, x_{\Delta}\right) \leq$ $\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{\Delta}}\right)^{2}(n / 2-1)(n / 2+1)<\max _{D} f$, which implies that $\left(x_{\delta}, \ldots, x_{\Delta}\right)$ cannot maximize f on D_{1}. If $\min \left(x_{\delta}, x_{\Delta}\right)=x_{\Delta}$ we deduce that only $(n / 2+1,0, \ldots, 0, n / 2-1)$ maximize f on D_{1}.

B2. If n is odd and $\min \left(x_{\delta}, x_{\Delta}\right)=x_{\delta}$ it follows that $x_{\delta} \leq(n-1) / 2$. If $x_{\delta}=$ $(n-1) / 2$ and $x_{i}=1$ we get $x_{\Delta}=(n-1) / 2$ and

$$
\begin{gathered}
f((n-1) / 2,0, \ldots, 0,1,0, \ldots, 0,(n-1) / 2)= \\
\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{\Delta}}\right)^{2}\left(\frac{n-1}{2}\right)^{2}+\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}\right)^{2} \frac{n-1}{2}+\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{\Delta}}\right)^{2} \frac{n-1}{2}= \\
\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{\Delta}}\right)^{2}\left(\frac{n-1}{2}\right)^{2}+\left(\frac{1}{\delta}+\frac{1}{\Delta}\right) \frac{n-1}{2}+(n-1) h(i)
\end{gathered}
$$

where

$$
\begin{equation*}
h(i)=\frac{1}{i}-\frac{C}{\sqrt{i}} \tag{9}
\end{equation*}
$$

and $C=\frac{1}{\sqrt{\delta}}+\frac{1}{\sqrt{\Delta}}$. By considering the function $g(x)=\frac{1}{x}-\frac{C}{\sqrt{x}}$ defined on the interval (δ, Δ), we get $g^{\prime}(x)=\frac{C \sqrt{x}-2}{2 x^{2}}$ having a unique root $x_{0}=4 / C^{2}$. Since $\frac{2}{\sqrt{\Delta}}<C<\frac{2}{\sqrt{\delta}}$ it follows that $x_{0} \in(\delta, \Delta)$ and $g(x)$ is decreasing on $\left(\delta, x_{0}\right)$ and increasing on $\left(x_{0}, \Delta\right)$. Therefore

$$
\begin{gathered}
\max _{\delta+1 \leq i \leq \Delta-1} h(i)=\max (h(\delta+1), h(\Delta-1))=h(\Delta-1)= \\
\frac{1}{\Delta-1}-\left(\frac{1}{\sqrt{\delta}}+\frac{1}{\sqrt{\Delta}}\right) \frac{1}{\sqrt{\Delta-1}}, \text { since } \\
0>\frac{1}{\sqrt{\delta+1}}-\left(\frac{1}{\sqrt{\delta}}+\frac{1}{\sqrt{\Delta}}\right)>\frac{1}{\sqrt{\Delta-1}}-\left(\frac{1}{\sqrt{\delta}}+\frac{1}{\sqrt{\Delta}}\right) \text { and } \frac{1}{\sqrt{\delta+1}}>\frac{1}{\sqrt{\Delta-1}} .
\end{gathered}
$$

It follows that

$$
\frac{1}{\sqrt{\delta+1}}\left(\frac{1}{\sqrt{\delta+1}}-\left(\frac{1}{\sqrt{\delta}}+\frac{1}{\sqrt{\Delta}}\right)\right)<\frac{1}{\sqrt{\Delta-1}}\left(\frac{1}{\sqrt{\Delta-1}}-\left(\frac{1}{\sqrt{\delta}}+\frac{1}{\sqrt{\Delta}}\right)\right) .
$$

Hence in the set of all sequences $\left(x_{\delta}, \ldots, x_{\Delta}\right) \in D_{1}$ such that $x_{\delta}=x_{\Delta}=(n-1) / 2$ and $x_{\delta+1}+\ldots+x_{\Delta-1}=1$ the maximum of f is reached only for $x_{\delta+1}=\ldots=x_{\Delta-2}=0$ and $x_{\Delta-1}=1$.

If $x_{\delta}=\min \left(x_{\delta}, x_{\Delta}\right)=(n-3) / 2, x_{i}=1$ and $x_{j}=0$ for every $\delta+1 \leq j \leq \Delta-1, j \neq i$ we deduce $x_{\Delta}=(n+1) / 2$ and $f((n-1) / 2,0, \ldots, 0,1,0, \ldots, 0,(n-1) / 2)-f((n-$ $3) / 2,0, \ldots, 0,1,0, \ldots, 0,(n+1) / 2)=2\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}\right)\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{\Delta}}\right)>0$, both sequences having a unity on the same position i. If $x_{\Delta}=\min \left(x_{\delta}, x_{\Delta}\right)=(n-3) / 2$ we also obtain $f((n-1) / 2,0, \ldots, 0,1,0, \ldots, 0,(n-1) / 2)-f((n+1) / 2,0, \ldots, 0,1,0, \ldots, 0,(n-$ $3) / 2)=2\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{\Delta}}\right)\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{\Delta}}\right)>0$. Otherwise $\min \left(x_{\delta}, x_{\Delta}\right) \leq(n-5) / 2$ and we deduce as for n even that $\left(x_{\delta}, \ldots, x_{\Delta}\right)$ cannot maximize f on D_{1}. Also, if $x_{\delta+1}=$ $\ldots=x_{\Delta-1}=0$ then maximum of f on D_{1} is reached for $((n-3) / 2,0, \ldots, 0,(n+3) / 2)$ or for $((n+3) / 2,0, \ldots, 0,(n-3) / 2)$ and the proof is complete.

Corollary 3.2. If $\delta=k, x_{k}=n-k+t, k \leq n / 2,0 \leq t \leq k$, then $\max _{D} f\left(x_{k}, \ldots\right.$, $\left.x_{n-1}\right)$ is reached only for $(n-k+t, 0, \ldots, 0, k-t)$.

Proof. Let $\Delta=n-1$ and suppose that $x=\left(x_{k}, \ldots, x_{n-1}\right) \in D$ realizes $\max _{D} f$. From the hypothesis it follows that $x_{k} \geq n / 2+t \geq n / 2$. If there exists at least an index $i, k+1 \leq i \leq n-2$ such that $x_{i} \geq 1$, by applying operation α we can get another sequence x^{\prime} such that $f\left(x^{\prime}\right)-f(\bar{x})>0$ by (2) or (4) since $x_{n-1}<n / 2$, a contradiction.

This result is also deduced in [8, Theorem 1] by using Kuhn-Tucker theorem.

4. Main results

A conjecture proposed in [3] (and amended in [1]) asserts that if G is a graph of order n satisfying $\delta(G) \geq k$, then $R(G)$ is minimum if and only if $G=\overline{K_{n-k}}+K_{k}$. We shall prove that every graph $G \in G(n, k)$ having $R(G)$ minimum is a join between a regular graph and a complete graph for every $k \geq\lfloor n / 2\rfloor$.
Let $\mathcal{H}(n, r)$ be the set of graphs of order n which are r-regular. $\mathcal{H}(n, r) \neq \emptyset$ if and only if $r \leq n-1$ and $n r$ is even (see for example [6]).

Theorem 4.1. Let G be a graph of order n and $\delta(G)=k \geq\lfloor n / 2\rfloor$. If its Randić index is minimum, then G is a join between a regular graph and a complete graph, namely:
i) If n is even, then:
$G=H+K_{n / 2}$, where $H \in \mathcal{H}(n / 2, k-n / 2)$ for k even and $n \equiv 0(\bmod 4), k$ odd and $n \equiv 0(\bmod 4), k$ odd and $n \equiv 2(\bmod 4)$;
$G=H+K_{(n+2) / 2}$, where $H \in \mathcal{H}((n-2) / 2, k-(n+2) / 2)$ if $k \geq(n+2) / 2$ for k even and $n \equiv 2(\bmod 4)$ or $G=H+K_{(n-2) / 2}$, where $H \in \mathcal{H}((n+2) / 2, k-(n-2) / 2)$ for k even and $n \equiv 2(\bmod$ 4).
ii) If n is odd, then:
$G=H+K_{(n+1) / 2}$, where $H \in \mathcal{H}((n-1) / 2, k-(n+1) / 2)$ if $k \geq(n+1) / 2$ for k even and $n \equiv 1(\bmod 4), k$ even and $n \equiv 3(\bmod 4), k$ odd and $n \equiv 1(\bmod 4)$, or $G=H+K_{(n-1) / 2}$, where $H \in \mathcal{H}((n+1) / 2, k-(n-1) / 2)$ for k even and $n \equiv 1(\bmod$ $4)$, k even and $n \equiv 3(\bmod 4), k$ odd and $n \equiv 3(\bmod 4)$.

Proof. i) If n is even, from Lemma 3.1 with $\delta=k$ and $\Delta=n-1$ we deduce that $\max \gamma_{1}$ is reached only for $\left(z_{k}, \ldots, z_{n-1}\right)=(n / 2,0, \ldots, 0, n / 2)$. It follows that the vertices of degree $n-1$ induce a complete subgraph $K_{n / 2}$ and the remaining vertices, of degree k, a subgraph which is regular of degree $k-n / 2$. This subgraph exists only if $\frac{n}{2}\left(k-\frac{n}{2}\right)$ is an even number, i.e., when k is even and $n \equiv 0(\bmod 4), k$ is odd and $n \equiv 0(\bmod 4)$ or when k is odd and $n \equiv 2(\bmod 4)$. In these cases any extremal graph is of the form $H+K_{n / 2}$, where H belongs to $\mathcal{H}(n / 2, k-n / 2)$ since max $\gamma_{2}=0$ $\left(x_{i, j}=z_{i} z_{j}\right.$ for $\left.n / 2 \leq i<j \leq n-1\right)$.

In the remaining case $(k$ even and $n \equiv 2(\bmod 4))$ there is no graphical realization for ($n / 2,0, \ldots, 0, n / 2$) and we shall consider the second maximum value for γ_{1}. This value is reached only for $x_{1}=(n / 2-1,0, \ldots, 0, n / 2+1)$ and $x_{2}=$ $(n / 2+1,0, \ldots, 0, n / 2-1)$. In the case of x_{1} we deduce that there exists a graphical realization, namely $H+K_{n / 2+1}$, where $H \in \mathcal{H}(n / 2-1, k-n / 2-1)$ if $k \geq n / 2+1$ and k is even and $n \equiv 2(\bmod 4)$. In this case also $\max \gamma_{2}=0$, hence this second extremal value of γ_{1} is also a second extremal value of γ. If the second extremal point is x_{2}, there also exists a graphical realization $H+K_{n / 2-1}$, where $H \in \mathcal{H}(n / 2+1, k-n / 2+1)$ if k is even and $n \equiv 2(\bmod 4)$.

Note that for $k=n / 2$ it is not possible to have k even and $n \equiv 2(\bmod 4)$, the extremal graph is only $\overline{K_{n / 2}}+K_{n / 2}$. This result was also deduced in [7].
ii) If n is odd then $\max \gamma_{1}$ is reached for $x_{3}=((n-1) / 2,0, \ldots, 0,(n+1) / 2)$ or $x_{4}=((n+1) / 2,0, \ldots, 0,(n-1) / 2) . \quad x_{3}$ correspond to a graphical realization $H+K_{(n+1) / 2}$, where $H \in \mathcal{H}((n-1) / 2, k-(n+1) / 2)$ if $k \geq(n+1) / 2$ for k even and $n \equiv 1(\bmod 4), k$ even and $n \equiv 3(\bmod 4)$ or k odd and $n \equiv 1(\bmod 4)$. For x_{4} we obtain $H+K_{(n-1) / 2}$, where $H \in \mathcal{H}((n+1) / 2, k-(n-1) / 2)$ if k is even and $n \equiv 1$ $(\bmod 4), k$ is even and $n \equiv 3(\bmod 4)$ or k is odd and $n \equiv 3(\bmod 4)$.

For $k=(n-1) / 2$ it is not possible to have k odd and $n \equiv 1(\bmod 4)$ and the extremal graph is unique and it coincides with $\overline{K_{(n+1) / 2}}+K_{(n-1) / 2}$ (see also [7]). Consequently, in all possible cases for k and n odd there exists at least one extremal graph in this list. Also, in all cases $x_{i, j}=z_{i} z_{j}$ for $(n-1) / 2 \leq i<j \leq n-1$, which implies $\max \gamma_{2}=0$.

For n odd it was not necessary to consider the second maximum point of γ_{1}, which is more difficult to localize relatively to the case when n was even.

Theorem 4.2. If G is a graph of order n, n is even and $\delta(G)=n / 2-1$, then $R(G)$ is minimum only if $G=\overline{K_{n / 2+1}}+K_{n / 2-1}$.

Proof. By Lemma $3.1 f\left(x_{n / 2-1}, \ldots, x_{n-1}\right)$ is maximum in D only for $x_{n / 2-1}=$ $n / 2, x_{n / 2}=\ldots=x_{n-2}=0$ and $x_{n-1}=n / 2$. This degree distribution has no graphical realization since in this case $x_{n-1}=n / 2$ implies $\delta(G) \geq n / 2$. This function has in D_{1} two extremal points and one of them, namely $(n / 2+1,0, \ldots, 0, n / 2-1)$ has a graphical realization, $\overline{K_{n / 2+1}}+K_{n / 2-1}$. Since $x_{i, j}=x_{i} x_{j}$ for $n / 2-1 \leq i<j \leq n-1$ it follows that $\max \gamma_{2}=0$ and this graph is the single graph with a minimum Randić index in $G(n, n / 2-1)$ when n is even.

Denote by $F(n, k)$ the class of graphs G of order n without loops or multiple edges and $\delta(G) \geq k$, i.e., $F(n, k)=\bigcup_{k \leq k^{\prime} \leq n-1} G\left(n, k^{\prime}\right)$. The problem of finding minimum

Randić index in this class of graphs, raised in [3], can be solved for every $k \geq\lfloor n / 2\rfloor$.
Corollary 4.3. i) If n is odd and $(n-1) / 2 \leq k \leq n-1$ then

$$
\min _{G \in F(n, k)} R(G)=\frac{n}{2}-\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{n-1}}\right)^{2}\left(n^{2}-1\right) / 8
$$

ii) If n is even and $n / 2-1 \leq k \leq n-1$ then

$$
\min _{G \in F(n, k)} R(G)= \begin{cases}\frac{n}{2}-\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{n-1}}\right)^{2} n^{2} / 8, & \text { if } k \text { is even and } n \equiv 0(\bmod 4), \\ k \text { is odd and } n \equiv 0(\bmod 4) \\ & \text { or } k \text { is odd and } n \equiv 2(\bmod 4) \\ \frac{n}{2}-\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{n-1}}\right)^{2}\left(n^{2}-4\right) / 8, & \text { if } k \text { even and } n \equiv 2(\bmod 4)\end{cases}
$$

Proof. We have

$$
\max _{k \leq k^{\prime} \leq n-1}\left(\frac{1}{\sqrt{k^{\prime}}}-\frac{1}{\sqrt{n-1}}\right)^{2}=\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{n-1}}\right)^{2}
$$

Also, if n is even, $n \equiv 2(\bmod 4)$ and k is even, then $k+1$ is odd and it is necessary to show that

$$
\begin{equation*}
\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{n-1}}\right)^{2}\left(n^{2}-4\right)>\left(\frac{1}{\sqrt{k+1}}-\frac{1}{\sqrt{n-1}}\right)^{2} n^{2} \tag{10}
\end{equation*}
$$

(10) is equivalent to

$$
\frac{n^{2}}{4}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\left(\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}-\frac{2}{\sqrt{n-1}}\right)>\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{n-1}}\right)^{2}
$$

Since

$$
\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}-\frac{2}{\sqrt{n-1}} \geq \frac{1}{\sqrt{k}}-\frac{1}{\sqrt{n-1}}
$$

it is sufficient to show that

$$
\frac{n^{2}}{4}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)>\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{n-1}}
$$

for every $1 \leq k \leq n-2$. This property can be proved easily since function $f(k)=$ $=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}$ is strictly decreasing on the interval $[1, n-2]$.

Concluding remarks

Using an approach different from that of Pavlović and Divnić $[7,8]$ we have obtained more information about the extremal points of the function γ_{1}, which allowed us to characterize graphs of order n and minimum degree equal to k having minimum Randić index for every $\lfloor n / 2\rfloor \leq k \leq n-1$ and also for n even and $k=n / 2-1$.
The conjecture attributed to Delorme, Favaron and Rautenbach in [7], namely the Randić index for graphs in $G(n, k)$, where $1 \leq k \leq n / 2$ attains its minimum value only for $\overline{K_{n-k}}+K_{k}$, was solved by Li, Liu and Liu [5].

References

[1] AOUCHICHE M., HANSEN P., On a conjecture about the Randić index, Discrete Math., 2(307), 2007, pp. 262-265.
[2] BOLLOBÁS B., ERDÖS P., Graphs of extremal weights, Ars Combin., 50, 1998, pp. 225-233.
[3] DELORME C., FAVARON O., RAUTENBACH D., On the Randić index, Discrete Math., 1(257), 2002, pp. 29-38.
[4] FAJTLOWICZ S., Written on the Wall, Conjectures of the Program Galatea Gabriella Graffiti, University of Houston, 1998.
[5] LI X., LIU B., LIU J., Complete solution to a conjecture on Randić index, European Journal of Operational Research, 2009, doi: 10.1016/j. ejor. 2008.12.010.
[6] LOVÁSZ L., Combinatorial problems and exercises, Akadémiai Kiadó, Budapest, 1979.
[7] PAVLOVIĆ L., On the conjecture of Delorme, Favaron and Rautenbach about the Randić index, European J. of Operational Research, 180, 2007, pp. 369-377.
[8] PAVLOVIĆ L., DIVNIĆ T., A quadratic programming approach to the Randić index, European J. of Operational Research, 176, 2007, pp. 435-444.
[9] RANDIĆ M., On characterization of molecular branching, J. Amer. Chem. Soc., 97, 1975, pp. 6609-6615.
[10] TODESCHINI R., CONSONNI V., Handbook of molecular descriptors, Wiley-VCH, Weinheim, 2000.

