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Abstract. In this paper all graphs G of order n and minimum degree

δ(G) = k having minimum Randić index R(G) are determined for k ≥ bn/2c.
Each extremal graph is the join between a regular graph of order n − s and a

complete graph of order s (where s ∈ {n/2, (n + 2)/2, (n− 2)/2} for n even and

s ∈ {(n + 1)/2, (n − 1)/2} for n odd). This yields an alternative proof in the

case of dense graphs to that proposed by Li, Liu and Liu [5] who very recently

solved a long-standing conjecture on Randić index. Also, the minimum value

of this index in the class of graphs of order n and δ(G) = k is determined for

k ≥ (n− 1)/2.

Key words: Randić index; complete graph; regular graph; non-linear pro-

gramming model; graph join.

1. Introduction

The Randić index R(G) of a graph G without isolated vertices was introduced in
1975 by Milan Randić under the name of ”branching index” [9] as follows:

R(G) =
∑

uv∈E(G)

(d(u)d(v))−1/2,
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where d(x) denotes the degree of a vertex x ∈ V (G). The Randić index is also called
”Randić connectivity index” or ”connectivity index” [10].

Randić proposed this index in order to quantitatively characterize the degree
of branching of the molecular skeleton, which is a critical factor for some physico-
chemical properties of alcanes. Let G(n, k) be the set of graphs without loops or
multiple edges having n vertices and the minimum degree δ(G) = k; the maximum
degree will be denoted by ∆(G).

Fajtlowicz mentioned [4] that Bollobás and Erdös asked for the minimum value of
the Randić index for graphs G ∈ G(n, k). The solution of this problem turned out to
be difficult.

For two vertex disjoint graphs, G and H, let G + H denote their join, i. e., the
graph obtained by joining by edges every vertex of G with all vertices of H; we shall
also denote by Kn the complement of Kn, which consists of n isolated vertices.

In [2] Bollobás and Erdös solved the problem for k = 1 and proved that the
extremal graph is unique and it coincides to K1,n−1 = Kn−1 + K1; for k = 2 the
problem was settled in [3] and the extremal graph is Kn−2 + K2. Delorme, Favaron
and Rautenbach also gave a conjecture about this problem in [3]:
In the set of graphs G of order n with δ(G) ≥ k the unique extremal graph is Kn−k +
Kk; this conjecture is valid only for k ≤ n/2 (see also [1]). Pavlović [7] using a
quadratic programming approach and Kuhn-Tucker theorem showed that in the class
G(n, bn/2c) the unique extremal graph is Kn−bn/2c + Kbn/2c.

In this paper, using the quadratic programming model for this problem proposed
by Pavlović and Divnić [8] and discrete optimization methods it is shown that every
extremal graph in the class G(n, k) is the join between a regular graph and a complete
graph (of order n/2, (n+2)/2 or (n− 2)/2 for n even and (n+1)/2 or (n− 1)/2 for n
odd) for every k ≥ bn/2c. These extremal graphs agree with the graphs found by Li,
Liu and Liu [5] who determined by a different method all extremal graphs in G(n, k)
for 1 ≤ k ≤ n− 1.

2. Nonlinear programming model of Pavlović and Divnić

For a graph G of order n without loops or multiple edges denote by δ = δ(G), ∆ =
∆(G), ni the number of vertices of degree i for δ ≤ i ≤ ∆ (nδ+nδ+1+. . .+n∆ = n) and
by xi,j ≥ 0 the number of edges joining the vertices of degrees i and j (δ ≤ i, j ≤ ∆).
Then

R(G) =
∑

δ≤i≤j≤∆

xi,j√
ij

and
∑∆

j=δ

j 6=i
xi,j + 2xi,i = ini for δ ≤ i ≤ ∆; xi,j ≤ ninj for δ ≤ i < j ≤ ∆; xi,i ≤

(
ni

2

)

for δ ≤ i ≤ ∆; xi,j = xj,i are nonnegative integers for δ ≤ i ≤ j ≤ ∆.
We can associate to the problem of minimizing R(G) the following nonlinear min-

imization problem:

min r(xδ,δ, . . . , x∆,∆) =
∑

δ≤i≤j≤∆

xi,j√
ij
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subject to
∆∑

j=δ

j 6=i

xi,j + 2xi,i = izi for δ ≤ i ≤ ∆;

zδ + zδ+1 + . . . + z∆ = n; (1)

xi,j ≤ zizj for δ ≤ i < j ≤ ∆;

xi,i ≤
(

zi

2

)
for δ ≤ i ≤ ∆;

xi,j = xj,i and zi are nonnegative integers for δ ≤ i ≤ j ≤ ∆.

Function r can also be written as [8]:

r(xδ,δ, . . . , x∆,∆) =
n

2
− 1

2

∑

δ≤i<j≤∆

(
1√
i
− 1√

j

)2

xi,j .

The problem of minimization of r becomes the problem of maximization of

γ(xδ,δ+1, . . . , x∆−1,∆) =
∑

δ≤i<j≤∆

(
1√
i
− 1√

j

)2

xi,j .

By denoting yi,j = zizj − xi,j for δ ≤ i < j ≤ ∆ and yi,i =
(

zi

2

)
− xi,i for δ ≤ i ≤ ∆

we get

γ(xδ,δ+1, . . . , x∆−1,∆) = γ1(zδ, . . . , z∆) + γ2(yδ,δ+1, . . . , y∆−1,∆),

where γ1 =
∑

δ≤i<j≤∆

(
1√
i
− 1√

j

)2

zizj and γ2 = −
∑

δ≤i<j≤∆

(
1√
i
− 1√

j

)2

yi,j .

We have yi,j ≥ 0 for δ ≤ i < j ≤ ∆; yi,i ≥ 0 for δ ≤ i ≤ ∆ and yi,j = yj,i are
integers for δ ≤ i ≤ j ≤ ∆. It is clear that

max γ ≤ max γ1 + max γ2.

We have max γ2 = 0 and this holds if and only if yi,j = 0 for δ ≤ i < j ≤ ∆, or
equivalently, xi,j = zizj for all indices δ ≤ i < j ≤ ∆.

In the next section we shall consider the problem of maximizing γ1 and all se-
quences (zδ, . . . , z∆) reaching the first and the second maximum values of γ1 will be
found. These sequences which have graphical realizations also reach the maximum of
γ2, hence the maximum of γ.
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3. A technical lemma

Denote ϕ(n) = maxn1+n2=n

n1,n2∈ZZ
n1n2; it follows that ϕ(n) = n2/4 for n even (n1 =

n2 = n/2) and ϕ(n) = (n2 − 1)/4 for n odd ({n1, n2} = {(n − 1)/2, (n + 1)/2}). If
1 ≤ δ < ∆ ≤ n− 1, δ,∆ ∈ IN , consider the function

f(xδ, xδ+1, . . . , x∆) =
∑

δ≤i<j≤∆

(
1√
i
− 1√

j

)2

xixj

and the domains D = {(xδ, xδ+1, . . . , x∆) : xi ∈ IN for δ ≤ i ≤ ∆,
∑∆

i=δ xi = n};
D1 = D\{(n/2, 0, . . . , 0, n/2)} for n even and D1 = D\{((n − 1)/2, 0, . . . , 0, (n +
1)/2), ((n + 1)/2, 0, . . . , 0, (n− 1)/2)} for n odd.

Lemma 3.1. All points where f is maximum in D and D1, respectively, are the fol-
lowing: i) If n ≥ 4 is even, then maxD f(xδ, . . . , x∆) is reached for (n/2, 0, . . . , 0, n/2)
and maxD1 f(xδ, . . . , x∆) for ((n−2)/2, 0, . . . , 0, (n+2)/2) and ((n+2)/2, 0, . . . , 0, (n−
2)/2); ii) If n ≥ 5 is odd, then maxD f(xδ, . . . , x∆) is attained for ((n−1)/2, 0, . . . , 0,
(n+1)/2) and ((n+1)/2, 0, . . . , 0, (n−1)/2) and maxD1 f(xδ, . . . , x∆) when (xδ, . . . x∆)
is located into the set {((n− 3)/2, 0, . . . , 0, (n + 3)/2), ((n + 3)/2, 0, . . . , 0, (n− 3)/2),
((n− 1)/2, 0, . . . , 0, 1, (n− 1)/2)}.

Proof. A. First we shall determine the maximum of f(xδ, . . . , x∆) when (xδ, . . . , x∆)
∈ D. If xδ+1 = . . . = x∆−1 = 0 then

f(xδ, . . . , x∆) =
(

1√
δ
− 1√

∆

)2

xδx∆,

and the result is obvious since xδ + x∆ = n.
Otherwise, denote by i (δ + 1 ≤ i ≤ ∆ − 1) the smallest index such that xi ≥ 1

and by j (δ + 1 ≤ j ≤ ∆ − 1) the greatest index such that xj ≥ 1; obviously i ≤ j.
Denote by α and β the operations consisting of replacing x = (xδ, . . . , x∆) ∈ D
by x′ = (xδ, 0, . . . , 0, xi, . . . , xj−1, xj − 1, 0, . . . , 0, x∆ + 1) ∈ D and by x′′ = (xδ +
1, 0, . . . , 0, xi − 1, xi+1, . . . , xj , 0, . . . , 0, x∆) ∈ D, respectively. We have:

f(x′)− f(x) =
(

1√
j
− 1√

∆

)2

(xj − x∆ − 1) + xδ

(
1√
j
− 1√

∆

)(
2√
δ
− 1√

j
− 1√

∆

)

+xi

(
1√
j
− 1√

∆

) (
2√
i
− 1√

j
− 1√

∆

)
+xi+1

(
1√
j
− 1√

∆

)(
2√

i + 1
− 1√

j
− 1√

∆

)
+

. . . + xj−1

(
1√
j
− 1√

∆

)(
2√

j − 1
− 1√

j
− 1√

∆

)
.

Since
2√
k
− 1√

j
− 1√

∆
>

1√
j
− 1√

∆
for k = δ, i, i + 1, . . . , j − 1, we can write

f(x′)− f(x) ≥
(

1√
j
− 1√

∆

)2

(xδ + xi + xi+1 + . . . + xj − x∆ − 1) (2)
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and this inequality is strict if at least one of xδ, xi, xi+1, . . . , xj−1 is different from
zero. Similarly,

f(x′′)−f(x) =
(

1√
δ
− 1√

i

)2

(xi−xδ−1)+xi+1

(
1√
δ
− 1√

i

) (
1√
δ

+
1√
i
− 2√

i + 1

)
+

. . . + xj

(
1√
δ
− 1√

i

)(
1√
δ

+
1√
i
− 2√

j

)
+ x∆

(
1√
δ
− 1√

i

)(
1√
δ

+
1√
i
− 2√

∆

)
,

which implies:

f(x′′)− f(x) ≥
(

1√
δ
− 1√

i

)2

(xi + xi+1 + . . . + xj + x∆ − xδ − 1) (3)

and this inequality is strict if at least one of xi+1, . . . , xj , x∆ is different from zero.
If i = j we get

f(x′)− f(x) ≥
(

1√
i
− 1√

∆

)2

(xδ + xi − x∆ − 1), (4)

the inequality being strict if xδ ≥ 1 and

f(x′′)− f(x) ≥
(

1√
δ
− 1√

i

)2

(x∆ + xi − xδ − 1), (5)

and this inequality is strict if x∆ ≥ 1.
We shall prove that at least one of the differences f(x′)−f(x) and f(x′′)−f(x) is

greater than zero, which implies that all sequences (xδ, . . . , x∆) ∈ D realizing maxi-
mum of f satisfy xδ+1 = . . . = x∆−1 = 0. Consider first the case when i = j. It is clear
that if xδ = x∆ = 0 then f(xδ, . . . , x∆) = 0 which implies that (0, . . . , 0, xi, 0, . . . , 0)
cannot maximize f . Otherwise, suppose that xδ ≥ 1. If xδ +xi−x∆− 1 ≥ 0 then (4)
is strict and it follows that f(x′) > f(x) and x cannot maximize f on D. Otherwise,
xδ +xi−x∆−1 ≤ −1. In this case x∆ ≥ xδ +xi, hence x∆ +xi−xδ−1 ≥ 2xi−1 ≥ 1,
which implies f(x′′) > f(x) and x also cannot maximize f . If x∆ ≥ 1 the same con-
clusion follows since (5) is strict.

Suppose that i < j. In this case xi > 0, xj > 0 and both inequalities (2) and (3)
are strict. If xδ +xi + . . .+xj−x∆−1 ≥ 0 then from (2) it follows that f(x′) > f(x).
Otherwise, x∆ ≥ xδ+xi+. . .+xj and xi+. . .+xj+x∆−xδ−1 ≥ 2(xi+. . .+xj)−1 > 0,
which implies f(x′′) > f(x) from (3).

Consequently, all sequences maximizing f have the form (n1, 0, . . . , 0, n2), where
n1 + n2 = n; in this case

f(n1, 0, . . . , 0, n2) =
(

1√
δ
− 1√

∆

)2

n1n2 ≤
(

1√
δ
− 1√

∆

)2

ϕ(n)

and the conclusion follows.
B. Consider that x = (xδ, . . . , x∆) ∈ D1. If xδ+1 = . . . = x∆−1 = 0 then

f(xδ, . . . , x∆) =
(

1√
δ
− 1√

∆

)2

xδx∆, where xδ + x∆ = n and the result is obvious.
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If xδ+1 + . . . + x∆−1 ≥ 2 then we have seen that by an operation α or β we can find
sequences y, z ∈ D such that f(x) < f(y) < f(z), hence x cannot maximize f on D1.
If xδ+1 + . . . + x∆−1 = 1 we shall consider other two subcases: B1: n is even; B2: n
is odd.

B1. If n is even we shall prove that x cannot maximize f if xδ+1 + . . .+x∆−1 = 1,
i.e., there exists an index i, δ + 1 ≤ i ≤ ∆− 1 such that xi = 1 and xj = 0 for every
δ + 1 ≤ j ≤ ∆− 1 and j 6= i.

Let k = min(xδ, x∆) ≤ n/2 − 1. Without loss of generality suppose that k = xδ.
If k = n/2 − 1, then xδ = n/2 − 1 and x∆ = n/2. Applying transformation α we
deduce that

f(n/2− 1, 0, . . . , 0, n/2 + 1)− f(n/2− 1, 0, . . . , 0, 1, 0, . . . , 0, n/2) =

(n

2
− 1

) (
2√
δ
− 1√

i
− 1√

∆

)(
1√
i
− 1√

∆

)
− n

2

(
1√
i
− 1√

∆

)2

=

(
1√
i
− 1√

∆

)(
n− 2√

δ
− n− 1√

i
+

1√
∆

)
.

We shall prove that
n− 2√

δ
− n− 1√

i
+

1√
∆

> 0, (6)

which will prove that (n/2−1, 0, . . . , 0, 1, 0, . . . , 0, n/2) cannot maximize f on D1. We
have

n− 2√
δ
− n− 1√

i
+

1√
∆
≥ n− 2√

δ
− n− 1√

δ + 1
+

1√
n− 1

.

Consider now the function g(x) =
n− 2√

x
− n− 1√

x + 1
, where x ∈ [1, n−3]. Its derivative

g′(x) =
1
2
(

n− 1
(x + 1)

√
x + 1

− n− 2
x
√

x
) is negative since this is equivalent to x3(n− 1)2 <

(x + 1)3(n− 2)2, or

x2(x(2n− 3)− 3(n− 2)2)− 3(n− 2)2x− (n− 2)2 < 0. (7)

We deduce that x(2n− 3) < 3(n− 2)2 for x ≤ n− 3 since n− 3 < 3(n− 2)2/(2n− 3)
is equivalent to n2 − 3n + 3 > 0 and this holds for n ≥ 4. It follows that (7) is
true, which implies that g is strictly decreasing on the interval [1, n − 3]. We get
n− 2√

δ
− n− 1√

δ + 1
+

1√
n− 1

≥ n− 2√
n− 3

− n− 1√
n− 2

+
1√

n− 1
. It remains to show that

n− 2√
n− 3

− n− 1√
n− 2

+
1√

n− 1
> 0 (8)

for every n ≥ 4. By elementary calculation we deduce that (8) is equivalent to
2(n − 2)2

√
(n− 1)(n− 3) > n3 − 7n2 + 15n − 11 for every n ≥ 4. But 2(n −

2)2
√

(n− 1)(n− 3) > 2(n−2)2(n−3) > n3−7n2 +15n−11 since the last inequality
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is equivalent to n3 − 7n2 + 17n− 13 > 0, which is true for n ≥ 4. Consequently, (6)
is true for every 1 ≤ δ < i < ∆ ≤ n− 1 and n ≥ 4.

If k = xδ ≤ n/2 − 2 it follows that x∆ ≥ n/2 + 1 and applying a transformation
β we deduce from (5) that f(xδ + 1, 0, . . . , 0, x∆) − f(xδ, 0, . . . , 0, 1, 0, . . . , 0, x∆) >

3
(

1√
δ
− 1√

i

)2

> 0 since x∆ − xδ ≥ 3. In this case f(xδ + 1, 0, . . . , 0, x∆) ≤
(

1√
δ
− 1√

∆

)2

(n/2 − 1)(n/2 + 1) < max
D

f , which implies that (xδ, . . . , x∆) cannot

maximize f on D1. If min(xδ, x∆) = x∆ we deduce that only (n/2+1, 0, . . . , 0, n/2−1)
maximize f on D1.

B2. If n is odd and min(xδ, x∆) = xδ it follows that xδ ≤ (n − 1)/2. If xδ =
(n− 1)/2 and xi = 1 we get x∆ = (n− 1)/2 and

f((n− 1)/2, 0, . . . , 0, 1, 0, . . . , 0, (n− 1)/2) =
(

1√
δ
− 1√

∆

)2 (
n− 1

2

)2

+
(

1√
δ
− 1√

i

)2
n− 1

2
+

(
1√
i
− 1√

∆

)2
n− 1

2
=

(
1√
δ
− 1√

∆

)2 (
n− 1

2

)2

+
(

1
δ

+
1
∆

)
n− 1

2
+ (n− 1)h(i),

where
h(i) =

1
i
− C√

i
(9)

and C =
1√
δ

+
1√
∆

. By considering the function g(x) =
1
x
− C√

x
defined on the

interval (δ,∆), we get g′(x) =
C
√

x− 2
2x2

having a unique root x0 = 4/C2. Since
2√
∆

< C <
2√
δ

it follows that x0 ∈ (δ,∆) and g(x) is decreasing on (δ, x0) and

increasing on (x0, ∆). Therefore

max
δ+1≤i≤∆−1

h(i) = max (h(δ + 1), h(∆− 1)) = h(∆− 1) =

1
∆− 1

−
(

1√
δ

+
1√
∆

)
1√

∆− 1
, since

0 >
1√

δ + 1
−

(
1√
δ

+
1√
∆

)
>

1√
∆− 1

−
(

1√
δ

+
1√
∆

)
and

1√
δ + 1

>
1√

∆− 1
.

It follows that

1√
δ + 1

(
1√

δ + 1
−

(
1√
δ

+
1√
∆

))
<

1√
∆− 1

(
1√

∆− 1
−

(
1√
δ

+
1√
∆

))
.

Hence in the set of all sequences (xδ, . . . , x∆) ∈ D1 such that xδ = x∆ = (n−1)/2 and
xδ+1 + . . . + x∆−1 = 1 the maximum of f is reached only for xδ+1 = . . . = x∆−2 = 0
and x∆−1 = 1.



462 I. Tomescu et al.

If xδ = min (xδ, x∆) = (n−3)/2, xi = 1 and xj = 0 for every δ+1 ≤ j ≤ ∆−1, j 6= i
we deduce x∆ = (n + 1)/2 and f((n − 1)/2, 0, . . . , 0, 1, 0, . . . , 0, (n − 1)/2) − f((n −
3)/2, 0, . . . , 0, 1, 0, . . . , 0, (n + 1)/2) = 2

(
1√
δ
− 1√

i

)(
1√
δ
− 1√

∆

)
> 0, both se-

quences having a unity on the same position i. If x∆ = min(xδ, x∆) = (n−3)/2 we also
obtain f((n−1)/2, 0, . . . , 0, 1, 0, . . . , 0, (n−1)/2)−f((n+1)/2, 0, . . . , 0, 1, 0, . . . , 0, (n−
3)/2) = 2

(
1√
δ
− 1√

∆

)(
1√
i
− 1√

∆

)
> 0. Otherwise min(xδ, x∆) ≤ (n − 5)/2 and

we deduce as for n even that (xδ, . . . , x∆) cannot maximize f on D1. Also, if xδ+1 =
. . . = x∆−1 = 0 then maximum of f on D1 is reached for ((n−3)/2, 0, . . . , 0, (n+3)/2)
or for ((n + 3)/2, 0, . . . , 0, (n− 3)/2) and the proof is complete. ¤

Corollary 3.2. If δ = k, xk = n− k + t, k ≤ n/2, 0 ≤ t ≤ k, then maxD f(xk, . . . ,
xn−1) is reached only for (n− k + t, 0, . . . , 0, k − t).

Proof. Let ∆ = n− 1 and suppose that x = (xk, . . . , xn−1) ∈ D realizes maxD f .
From the hypothesis it follows that xk ≥ n/2 + t ≥ n/2. If there exists at least an
index i, k + 1 ≤ i ≤ n − 2 such that xi ≥ 1, by applying operation α we can get
another sequence x′ such that f(x′) − f(x) > 0 by (2) or (4) since xn−1 < n/2, a
contradiction. ¤

This result is also deduced in [8, Theorem 1] by using Kuhn-Tucker theorem.

4. Main results

A conjecture proposed in [3] (and amended in [1]) asserts that if G is a graph of
order n satisfying δ(G) ≥ k, then R(G) is minimum if and only if G = Kn−k + Kk.
We shall prove that every graph G ∈ G(n, k) having R(G) minimum is a join between
a regular graph and a complete graph for every k ≥ bn/2c.
Let H(n, r) be the set of graphs of order n which are r-regular. H(n, r) 6= ∅ if and
only if r ≤ n− 1 and nr is even (see for example [6]).

Theorem 4.1. Let G be a graph of order n and δ(G) = k ≥ bn/2c. If its Randić
index is minimum, then G is a join between a regular graph and a complete graph,
namely:
i) If n is even, then:
G = H +Kn/2, where H ∈ H(n/2, k−n/2) for k even and n ≡ 0 (mod 4), k odd and
n ≡ 0 (mod 4), k odd and n ≡ 2 (mod 4);
G = H +K(n+2)/2, where H ∈ H((n− 2)/2, k− (n+2)/2) if k ≥ (n+2)/2 for k even
and n ≡ 2 (mod 4) or
G = H +K(n−2)/2, where H ∈ H((n+2)/2, k− (n−2)/2) for k even and n ≡ 2 (mod
4).
ii) If n is odd, then:
G = H +K(n+1)/2, where H ∈ H((n− 1)/2, k− (n+1)/2) if k ≥ (n+1)/2 for k even
and n ≡ 1 (mod 4), k even and n ≡ 3 (mod 4), k odd and n ≡ 1 (mod 4), or
G = H +K(n−1)/2, where H ∈ H((n+1)/2, k− (n−1)/2) for k even and n ≡ 1 (mod
4), k even and n ≡ 3 (mod 4), k odd and n ≡ 3 (mod 4).
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Proof. i) If n is even, from Lemma 3.1 with δ = k and ∆ = n− 1 we deduce that
max γ1 is reached only for (zk, . . . , zn−1) = (n/2, 0, . . . , 0, n/2). It follows that the
vertices of degree n− 1 induce a complete subgraph Kn/2 and the remaining vertices,
of degree k, a subgraph which is regular of degree k−n/2. This subgraph exists only
if

n

2
(k − n

2
) is an even number, i.e., when k is even and n ≡ 0 (mod 4), k is odd and

n ≡ 0 (mod 4) or when k is odd and n ≡ 2 (mod 4). In these cases any extremal
graph is of the form H +Kn/2, where H belongs to H(n/2, k−n/2) since max γ2 = 0
(xi,j = zizj for n/2 ≤ i < j ≤ n− 1).

In the remaining case (k even and n ≡ 2 (mod 4)) there is no graphical re-
alization for (n/2, 0, . . . , 0, n/2) and we shall consider the second maximum value
for γ1. This value is reached only for x1 = (n/2 − 1, 0, . . . , 0, n/2 + 1) and x2 =
(n/2 + 1, 0, . . . , 0, n/2− 1). In the case of x1 we deduce that there exists a graphical
realization, namely H +Kn/2+1, where H ∈ H(n/2−1, k−n/2−1) if k ≥ n/2+1 and
k is even and n ≡ 2 (mod 4). In this case also max γ2 = 0, hence this second extremal
value of γ1 is also a second extremal value of γ. If the second extremal point is x2,
there also exists a graphical realization H+Kn/2−1, where H ∈ H(n/2+1, k−n/2+1)
if k is even and n ≡ 2 (mod 4).

Note that for k = n/2 it is not possible to have k even and n ≡ 2 (mod 4), the
extremal graph is only Kn/2 + Kn/2. This result was also deduced in [7].

ii) If n is odd then max γ1 is reached for x3 = ((n − 1)/2, 0, . . . , 0, (n + 1)/2)
or x4 = ((n + 1)/2, 0, . . . , 0, (n − 1)/2). x3 correspond to a graphical realization
H + K(n+1)/2, where H ∈ H((n− 1)/2, k− (n + 1)/2) if k ≥ (n + 1)/2 for k even and
n ≡ 1 (mod 4), k even and n ≡ 3 (mod 4) or k odd and n ≡ 1 (mod 4). For x4 we
obtain H + K(n−1)/2, where H ∈ H((n + 1)/2, k − (n− 1)/2) if k is even and n ≡ 1
(mod 4), k is even and n ≡ 3 (mod 4) or k is odd and n ≡ 3 (mod 4).

For k = (n − 1)/2 it is not possible to have k odd and n ≡ 1 (mod 4) and the
extremal graph is unique and it coincides with K(n+1)/2 + K(n−1)/2 (see also [7]).
Consequently, in all possible cases for k and n odd there exists at least one extremal
graph in this list. Also, in all cases xi,j = zizj for (n − 1)/2 ≤ i < j ≤ n − 1, which
implies max γ2 = 0.

For n odd it was not necessary to consider the second maximum point of γ1, which
is more difficult to localize relatively to the case when n was even. ¤

Theorem 4.2. If G is a graph of order n, n is even and δ(G) = n/2 − 1, then
R(G) is minimum only if G = Kn/2+1 + Kn/2−1.

Proof. By Lemma 3.1 f(xn/2−1, . . . , xn−1) is maximum in D only for xn/2−1 =
n/2, xn/2 = . . . = xn−2 = 0 and xn−1 = n/2. This degree distribution has no
graphical realization since in this case xn−1 = n/2 implies δ(G) ≥ n/2. This function
has in D1 two extremal points and one of them, namely (n/2+1, 0, . . . , 0, n/2−1) has
a graphical realization, Kn/2+1+Kn/2−1. Since xi,j = xixj for n/2−1 ≤ i < j ≤ n−1
it follows that max γ2 = 0 and this graph is the single graph with a minimum Randić
index in G(n, n/2− 1) when n is even. ¤

Denote by F (n, k) the class of graphs G of order n without loops or multiple edges
and δ(G) ≥ k, i.e., F (n, k) =

⋃
k≤k′≤n−1 G(n, k′). The problem of finding minimum
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Randić index in this class of graphs, raised in [3], can be solved for every k ≥ bn/2c.

Corollary 4.3. i) If n is odd and (n− 1)/2 ≤ k ≤ n− 1 then

min
G∈F (n,k)

R(G) =
n

2
−

(
1√
k
− 1√

n− 1

)2

(n2 − 1)/8;

ii) If n is even and n/2− 1 ≤ k ≤ n− 1 then

min
G∈F (n,k)

R(G) =





n
2 −

(
1√
k
− 1√

n−1

)2

n2/8, if k is even and n ≡ 0 (mod 4),
k is odd and n ≡ 0 (mod 4)
or k is odd and n ≡ 2 (mod 4);

n
2 −

(
1√
k
− 1√

n−1

)2

(n2 − 4)/8, if k even and n ≡ 2 (mod 4).

Proof. We have

max
k≤k′≤n−1

(
1√
k′
− 1√

n− 1

)2

=
(

1√
k
− 1√

n− 1

)2

.

Also, if n is even, n ≡ 2 (mod 4) and k is even, then k + 1 is odd and it is necessary
to show that

(
1√
k
− 1√

n− 1

)2

(n2 − 4) >

(
1√

k + 1
− 1√

n− 1

)2

n2. (10)

(10) is equivalent to

n2

4

(
1√
k
− 1√

k + 1

)(
1√
k

+
1√

k + 1
− 2√

n− 1

)
>

(
1√
k
− 1√

n− 1

)2

.

Since
1√
k

+
1√

k + 1
− 2√

n− 1
≥ 1√

k
− 1√

n− 1
,

it is sufficient to show that

n2

4

(
1√
k
− 1√

k + 1

)
>

1√
k
− 1√

n− 1

for every 1 ≤ k ≤ n − 2. This property can be proved easily since function f(k) =

=
1√
k
− 1√

k + 1
is strictly decreasing on the interval [1, n− 2]. ¤
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Concluding remarks

Using an approach different from that of Pavlović and Divnić [7, 8] we have ob-
tained more information about the extremal points of the function γ1, which allowed
us to characterize graphs of order n and minimum degree equal to k having minimum
Randić index for every bn/2c ≤ k ≤ n− 1 and also for n even and k = n/2− 1.
The conjecture attributed to Delorme, Favaron and Rautenbach in [7], namely the
Randić index for graphs in G(n, k), where 1 ≤ k ≤ n/2 attains its minimum value
only for Kn−k + Kk, was solved by Li, Liu and Liu [5].
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Math., 2(307), 2007, pp. 262–265.

[2] BOLLOBÁS B., ERDÖS P., Graphs of extremal weights, Ars Combin., 50, 1998,
pp. 225–233.

[3] DELORME C., FAVARON O., RAUTENBACH D., On the Randić index, Discrete
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