On Dense Graphs Having Minimum Randić Index

Ioan TOMESCU, Ruxandra MARINESCU-GHEMECI, Gabriela MIHAI

Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, 010014 Bucharest, Romania

E-mail: ioan@fmi.unibuc.ro, veruxy@yahoo.com, criogab@yahoo.com

Abstract. In this paper all graphs G of order n and minimum degree $\delta(G) = k$ having minimum Randić index R(G) are determined for $k \geq \lfloor n/2 \rfloor$. Each extremal graph is the join between a regular graph of order n - s and a complete graph of order s (where $s \in \{n/2, (n+2)/2, (n-2)/2\}$ for n even and $s \in \{(n+1)/2, (n-1)/2\}$ for n odd). This yields an alternative proof in the case of dense graphs to that proposed by Li, Liu and Liu [5] who very recently solved a long-standing conjecture on Randić index. Also, the minimum value of this index in the class of graphs of order n and $\delta(G) = k$ is determined for $k \geq (n-1)/2$.

Key words: Randić index; complete graph; regular graph; non-linear programming model; graph join.

1. Introduction

The Randić index R(G) of a graph G without isolated vertices was introduced in 1975 by Milan Randić under the name of "branching index" [9] as follows:

$$R(G) = \sum_{uv \in E(G)} (d(u)d(v))^{-1/2},$$

where d(x) denotes the degree of a vertex $x \in V(G)$. The Randić index is also called "Randić connectivity index" or "connectivity index" [10].

Randić proposed this index in order to quantitatively characterize the degree of branching of the molecular skeleton, which is a critical factor for some physicochemical properties of alcanes. Let G(n, k) be the set of graphs without loops or multiple edges having n vertices and the minimum degree $\delta(G) = k$; the maximum degree will be denoted by $\Delta(G)$.

Fajtlowicz mentioned [4] that Bollobás and Erdös asked for the minimum value of the Randić index for graphs $G \in G(n, k)$. The solution of this problem turned out to be difficult.

For two vertex disjoint graphs, G and H, let G + H denote their join, i. e., the graph obtained by joining by edges every vertex of G with all vertices of H; we shall also denote by $\overline{K_n}$ the complement of K_n , which consists of n isolated vertices.

In [2] Bollobás and Erdös solved the problem for k = 1 and proved that the extremal graph is unique and it coincides to $K_{1,n-1} = \overline{K_{n-1}} + K_1$; for k = 2 the problem was settled in [3] and the extremal graph is $\overline{K_{n-2}} + K_2$. Delorme, Favaron and Rautenbach also gave a conjecture about this problem in [3]:

In the set of graphs G of order n with $\delta(G) \geq k$ the unique extremal graph is $\overline{K_{n-k}} + K_k$; this conjecture is valid only for $k \leq n/2$ (see also [1]). Pavlović [7] using a quadratic programming approach and Kuhn-Tucker theorem showed that in the class $G(n, \lfloor n/2 \rfloor)$ the unique extremal graph is $\overline{K_{n-\lfloor n/2 \rfloor}} + K_{\lfloor n/2 \rfloor}$.

In this paper, using the quadratic programming model for this problem proposed by Pavlović and Divnić [8] and discrete optimization methods it is shown that every extremal graph in the class G(n,k) is the join between a regular graph and a complete graph (of order n/2, (n+2)/2 or (n-2)/2 for n even and (n+1)/2 or (n-1)/2 for nodd) for every $k \ge \lfloor n/2 \rfloor$. These extremal graphs agree with the graphs found by Li, Liu and Liu [5] who determined by a different method all extremal graphs in G(n,k)for $1 \le k \le n-1$.

2. Nonlinear programming model of Pavlović and Divnić

For a graph G of order n without loops or multiple edges denote by $\delta = \delta(G)$, $\Delta = \Delta(G)$, n_i the number of vertices of degree i for $\delta \leq i \leq \Delta$ $(n_{\delta}+n_{\delta+1}+\ldots+n_{\Delta}=n)$ and by $x_{i,j} \geq 0$ the number of edges joining the vertices of degrees i and j ($\delta \leq i, j \leq \Delta$). Then

$$R(G) = \sum_{\delta \le i \le j \le \Delta} \frac{x_{i,j}}{\sqrt{ij}}$$

and $\sum_{\substack{j=\delta\\j\neq i}}^{\Delta} x_{i,j} + 2x_{i,i} = in_i \text{ for } \delta \leq i \leq \Delta; \ x_{i,j} \leq n_i n_j \text{ for } \delta \leq i < j \leq \Delta; \ x_{i,i} \leq {n_i \choose 2}$ for $\delta \leq i \leq \Delta; x_{i,j} = x_{j,i}$ are nonnegative integers for $\delta \leq i \leq j \leq \Delta$.

We can associate to the problem of minimizing R(G) the following nonlinear minimization problem:

$$\min r(x_{\delta,\delta},\ldots,x_{\Delta,\Delta}) = \sum_{\delta \le i \le j \le \Delta} \frac{x_{i,j}}{\sqrt{ij}}$$

subject to

$$\sum_{\substack{j=\delta\\j\neq i}}^{\Delta} x_{i,j} + 2x_{i,i} = iz_i \text{ for } \delta \le i \le \Delta;$$

$$z_{\delta} + z_{\delta+1} + \dots + z_{\Delta} = n; \qquad (1)$$

$$x_{i,j} \le z_i z_j \text{ for } \delta \le i < j \le \Delta;$$

$$x_{i,i} \le \binom{z_i}{2} \text{ for } \delta \le i \le \Delta;$$

 $x_{i,j} = x_{j,i}$ and z_i are nonnegative integers for $\delta \leq i \leq j \leq \Delta$.

Function r can also be written as [8]:

$$r(x_{\delta,\delta},\ldots,x_{\Delta,\Delta}) = \frac{n}{2} - \frac{1}{2} \sum_{\delta \le i < j \le \Delta} \left(\frac{1}{\sqrt{i}} - \frac{1}{\sqrt{j}}\right)^2 x_{i,j}.$$

The problem of minimization of r becomes the problem of maximization of

$$\gamma(x_{\delta,\delta+1},\ldots,x_{\Delta-1,\Delta}) = \sum_{\delta \le i < j \le \Delta} \left(\frac{1}{\sqrt{i}} - \frac{1}{\sqrt{j}}\right)^2 x_{i,j}$$

By denoting $y_{i,j} = z_i z_j - x_{i,j}$ for $\delta \le i < j \le \Delta$ and $y_{i,i} = \binom{z_i}{2} - x_{i,i}$ for $\delta \le i \le \Delta$ we get

$$\gamma(x_{\delta,\delta+1},\ldots,x_{\Delta-1,\Delta})=\gamma_1(z_{\delta},\ldots,z_{\Delta})+\gamma_2(y_{\delta,\delta+1},\ldots,y_{\Delta-1,\Delta}),$$

where
$$\gamma_1 = \sum_{\delta \le i < j \le \Delta} \left(\frac{1}{\sqrt{i}} - \frac{1}{\sqrt{j}} \right)^2 z_i z_j$$
 and $\gamma_2 = -\sum_{\delta \le i < j \le \Delta} \left(\frac{1}{\sqrt{i}} - \frac{1}{\sqrt{j}} \right)^2 y_{i,j}$.

We have $y_{i,j} \ge 0$ for $\delta \le i < j \le \Delta$; $y_{i,i} \ge 0$ for $\delta \le i \le \Delta$ and $y_{i,j} = y_{j,i}$ are integers for $\delta \le i \le j \le \Delta$. It is clear that

$$\max \gamma \le \max \gamma_1 + \max \gamma_2.$$

We have $\max \gamma_2 = 0$ and this holds if and only if $y_{i,j} = 0$ for $\delta \leq i < j \leq \Delta$, or equivalently, $x_{i,j} = z_i z_j$ for all indices $\delta \leq i < j \leq \Delta$.

In the next section we shall consider the problem of maximizing γ_1 and all sequences $(z_{\delta}, \ldots, z_{\Delta})$ reaching the first and the second maximum values of γ_1 will be found. These sequences which have graphical realizations also reach the maximum of γ_2 , hence the maximum of γ .

3. A technical lemma

Denote $\varphi(n) = \max_{\substack{n_1+n_2=n\\n_1,n_2 \in \mathbb{Z}}} n_1 n_2$; it follows that $\varphi(n) = n^2/4$ for n even $(n_1 = n_2 = n/2)$ and $\varphi(n) = (n^2 - 1)/4$ for n odd $(\{n_1, n_2\} = \{(n-1)/2, (n+1)/2\})$. If $1 \le \delta < \Delta \le n - 1, \delta, \Delta \in \mathbb{N}$, consider the function

$$f(x_{\delta}, x_{\delta+1}, \dots, x_{\Delta}) = \sum_{\delta \le i < j \le \Delta} \left(\frac{1}{\sqrt{i}} - \frac{1}{\sqrt{j}}\right)^2 x_i x_j$$

and the domains $D = \{(x_{\delta}, x_{\delta+1}, \dots, x_{\Delta}) : x_i \in \mathbb{N} \text{ for } \delta \leq i \leq \Delta, \sum_{i=\delta}^{\Delta} x_i = n\};$ $D_1 = D \setminus \{(n/2, 0, \dots, 0, n/2)\}$ for n even and $D_1 = D \setminus \{((n-1)/2, 0, \dots, 0, (n+1)/2), ((n+1)/2, 0, \dots, 0, (n-1)/2)\}$ for n odd.

Lemma 3.1. All points where f is maximum in D and D_1 , respectively, are the following: i) If $n \ge 4$ is even, then $\max_D f(x_{\delta}, \ldots, x_{\Delta})$ is reached for $(n/2, 0, \ldots, 0, n/2)$ and $\max_{D_1} f(x_{\delta}, \ldots, x_{\Delta})$ for $((n-2)/2, 0, \ldots, 0, (n+2)/2)$ and $((n+2)/2, 0, \ldots, 0, (n-2)/2)$; ii) If $n \ge 5$ is odd, then $\max_D f(x_{\delta}, \ldots, x_{\Delta})$ is attained for $((n-1)/2, 0, \ldots, 0, (n+1)/2)$ and $((n+1)/2, 0, \ldots, 0, (n-1)/2)$ and $\max_{D_1} f(x_{\delta}, \ldots, x_{\Delta})$ when $(x_{\delta}, \ldots, x_{\Delta})$ is located into the set $\{((n-3)/2, 0, \ldots, 0, (n+3)/2), ((n+3)/2, 0, \ldots, 0, (n-3)/2), ((n-1)/2, 0, \ldots, 0, 1, (n-1)/2)\}$.

Proof. **A.** First we shall determine the maximum of $f(x_{\delta}, \ldots, x_{\Delta})$ when $(x_{\delta}, \ldots, x_{\Delta}) \in D$. If $x_{\delta+1} = \ldots = x_{\Delta-1} = 0$ then

$$f(x_{\delta},\ldots,x_{\Delta}) = \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{\Delta}}\right)^2 x_{\delta} x_{\Delta},$$

and the result is obvious since $x_{\delta} + x_{\Delta} = n$.

Otherwise, denote by $i(\delta + 1 \le i \le \Delta - 1)$ the smallest index such that $x_i \ge 1$ and by $j(\delta + 1 \le j \le \Delta - 1)$ the greatest index such that $x_j \ge 1$; obviously $i \le j$. Denote by α and β the operations consisting of replacing $x = (x_{\delta}, \ldots, x_{\Delta}) \in D$ by $x' = (x_{\delta}, 0, \ldots, 0, x_i, \ldots, x_{j-1}, x_j - 1, 0, \ldots, 0, x_{\Delta} + 1) \in D$ and by $x'' = (x_{\delta} + 1, 0, \ldots, 0, x_i - 1, x_{i+1}, \ldots, x_j, 0, \ldots, 0, x_{\Delta}) \in D$, respectively. We have:

$$f(x') - f(x) = \left(\frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}}\right)^2 (x_j - x_\Delta - 1) + x_\delta \left(\frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}}\right) \left(\frac{2}{\sqrt{\delta}} - \frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}}\right) + x_i \left(\frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}}\right) \left(\frac{2}{\sqrt{i}} - \frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}}\right) + x_{i+1} \left(\frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}}\right) \left(\frac{2}{\sqrt{i+1}} - \frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}}\right) + \dots + x_{j-1} \left(\frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}}\right) \left(\frac{2}{\sqrt{j-1}} - \frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}}\right).$$

Since $\frac{2}{\sqrt{k}} - \frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}} > \frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}}$ for $k = \delta, i, i + 1, \dots, j - 1$, we can write $f(x') - f(x) \ge \left(\frac{1}{\sqrt{j}} - \frac{1}{\sqrt{\Delta}}\right)^2 (x_\delta + x_i + x_{i+1} + \dots + x_j - x_\Delta - 1)$ (2) and this inequality is strict if at least one of $x_{\delta}, x_i, x_{i+1}, \ldots, x_{j-1}$ is different from zero. Similarly,

$$f(x'')-f(x) = \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{i}}\right)^2 (x_i - x_\delta - 1) + x_{i+1} \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{i}}\right) \left(\frac{1}{\sqrt{\delta}} + \frac{1}{\sqrt{i}} - \frac{2}{\sqrt{i+1}}\right) + \dots + x_j \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{i}}\right) \left(\frac{1}{\sqrt{\delta}} + \frac{1}{\sqrt{i}} - \frac{2}{\sqrt{j}}\right) + x_\Delta \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{i}}\right) \left(\frac{1}{\sqrt{\delta}} + \frac{1}{\sqrt{i}} - \frac{2}{\sqrt{\Delta}}\right),$$
which implies:

which implies:

$$f(x'') - f(x) \ge \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{i}}\right)^2 (x_i + x_{i+1} + \dots + x_j + x_\Delta - x_\delta - 1)$$
(3)

and this inequality is strict if at least one of $x_{i+1}, \ldots, x_j, x_\Delta$ is different from zero. If i = j we get

$$f(x') - f(x) \ge \left(\frac{1}{\sqrt{i}} - \frac{1}{\sqrt{\Delta}}\right)^2 (x_\delta + x_i - x_\Delta - 1),\tag{4}$$

the inequality being strict if $x_{\delta} \geq 1$ and

$$f(x'') - f(x) \ge \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{i}}\right)^2 (x_\Delta + x_i - x_\delta - 1),\tag{5}$$

and this inequality is strict if $x_{\Delta} \ge 1$.

We shall prove that at least one of the differences f(x') - f(x) and f(x'') - f(x) is greater than zero, which implies that all sequences $(x_{\delta}, \ldots, x_{\Delta}) \in D$ realizing maximum of f satisfy $x_{\delta+1} = \ldots = x_{\Delta-1} = 0$. Consider first the case when i = j. It is clear that if $x_{\delta} = x_{\Delta} = 0$ then $f(x_{\delta}, \ldots, x_{\Delta}) = 0$ which implies that $(0, \ldots, 0, x_i, 0, \ldots, 0)$ cannot maximize f. Otherwise, suppose that $x_{\delta} \ge 1$. If $x_{\delta} + x_i - x_{\Delta} - 1 \ge 0$ then (4) is strict and it follows that f(x') > f(x) and x cannot maximize f on D. Otherwise, $x_{\delta} + x_i - x_{\Delta} - 1 \leq -1$. In this case $x_{\Delta} \geq x_{\delta} + x_i$, hence $x_{\Delta} + x_i - x_{\delta} - 1 \geq 2x_i - 1 \geq 1$, which implies f(x'') > f(x) and x also cannot maximize f. If $x_{\Delta} \ge 1$ the same conclusion follows since (5) is strict.

Suppose that i < j. In this case $x_i > 0, x_j > 0$ and both inequalities (2) and (3) are strict. If $x_{\delta} + x_i + \ldots + x_j - x_{\Delta} - 1 \ge 0$ then from (2) it follows that f(x') > f(x). Otherwise, $x_{\Delta} \ge x_{\delta} + x_i + \ldots + x_j$ and $x_i + \ldots + x_j + x_{\Delta} - x_{\delta} - 1 \ge 2(x_i + \ldots + x_j) - 1 > 0$, which implies f(x'') > f(x) from (3).

Consequently, all sequences maximizing f have the form $(n_1, 0, \ldots, 0, n_2)$, where $n_1 + n_2 = n$; in this case

$$f(n_1, 0, \dots, 0, n_2) = \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{\Delta}}\right)^2 n_1 n_2 \le \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{\Delta}}\right)^2 \varphi(n)$$

and the conclusion follows.

B. Consider that $x = (x_{\delta}, \dots, x_{\Delta}) \in D_1$. If $x_{\delta+1} = \dots = x_{\Delta-1} = 0$ then $f(x_{\delta}, \dots, x_{\Delta}) = \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{\Delta}}\right)^2 x_{\delta} x_{\Delta}$, where $x_{\delta} + x_{\Delta} = n$ and the result is obvious.

If $x_{\delta+1} + \ldots + x_{\Delta-1} \ge 2$ then we have seen that by an operation α or β we can find sequences $y, z \in D$ such that f(x) < f(y) < f(z), hence x cannot maximize f on D_1 . If $x_{\delta+1} + \ldots + x_{\Delta-1} = 1$ we shall consider other two subcases: B1: n is even; B2: nis odd.

B1. If n is even we shall prove that x cannot maximize f if $x_{\delta+1} + \ldots + x_{\Delta-1} = 1$, i.e., there exists an index $i, \delta + 1 \le i \le \Delta - 1$ such that $x_i = 1$ and $x_j = 0$ for every $\delta + 1 \le j \le \Delta - 1$ and $j \ne i$.

Let $k = \min(x_{\delta}, x_{\Delta}) \leq n/2 - 1$. Without loss of generality suppose that $k = x_{\delta}$. If k = n/2 - 1, then $x_{\delta} = n/2 - 1$ and $x_{\Delta} = n/2$. Applying transformation α we deduce that

$$f(n/2-1,0,\ldots,0,n/2+1) - f(n/2-1,0,\ldots,0,1,0,\ldots,0,n/2) =$$

$$\left(\frac{n}{2}-1\right)\left(\frac{2}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{\Delta}}\right)\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{\Delta}}\right) - \frac{n}{2}\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{\Delta}}\right)^2 =$$

$$\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{\Delta}}\right)\left(\frac{n-2}{\sqrt{\delta}}-\frac{n-1}{\sqrt{i}}+\frac{1}{\sqrt{\Delta}}\right).$$

We shall prove that

$$\frac{n-2}{\sqrt{\delta}} - \frac{n-1}{\sqrt{i}} + \frac{1}{\sqrt{\Delta}} > 0, \tag{6}$$

which will prove that (n/2-1, 0, ..., 0, 1, 0, ..., 0, n/2) cannot maximize f on D_1 . We have

$$\frac{n-2}{\sqrt{\delta}} - \frac{n-1}{\sqrt{i}} + \frac{1}{\sqrt{\Delta}} \ge \frac{n-2}{\sqrt{\delta}} - \frac{n-1}{\sqrt{\delta+1}} + \frac{1}{\sqrt{n-1}}.$$

Consider now the function $g(x) = \frac{n-2}{\sqrt{x}} - \frac{n-1}{\sqrt{x+1}}$, where $x \in [1, n-3]$. Its derivative $g'(x) = \frac{1}{2}(\frac{n-1}{(x+1)\sqrt{x+1}} - \frac{n-2}{x\sqrt{x}})$ is negative since this is equivalent to $x^3(n-1)^2 < (x+1)^3(n-2)^2$, or

$$x^{2}(x(2n-3)-3(n-2)^{2})-3(n-2)^{2}x-(n-2)^{2}<0.$$
(7)

We deduce that $x(2n-3) < 3(n-2)^2$ for $x \le n-3$ since $n-3 < 3(n-2)^2/(2n-3)$ is equivalent to $n^2 - 3n + 3 > 0$ and this holds for $n \ge 4$. It follows that (7) is true, which implies that g is strictly decreasing on the interval [1, n-3]. We get $\frac{n-2}{\sqrt{\delta}} - \frac{n-1}{\sqrt{\delta+1}} + \frac{1}{\sqrt{n-1}} \ge \frac{n-2}{\sqrt{n-3}} - \frac{n-1}{\sqrt{n-2}} + \frac{1}{\sqrt{n-1}}$. It remains to show that

$$\frac{n-2}{\sqrt{n-3}} - \frac{n-1}{\sqrt{n-2}} + \frac{1}{\sqrt{n-1}} > 0 \tag{8}$$

for every $n \ge 4$. By elementary calculation we deduce that (8) is equivalent to $2(n-2)^2\sqrt{(n-1)(n-3)} > n^3 - 7n^2 + 15n - 11$ for every $n \ge 4$. But $2(n-2)^2\sqrt{(n-1)(n-3)} > 2(n-2)^2(n-3) > n^3 - 7n^2 + 15n - 11$ since the last inequality

460

is equivalent to $n^3 - 7n^2 + 17n - 13 > 0$, which is true for $n \ge 4$. Consequently, (6) is true for every $1 \le \delta < i < \Delta \le n - 1$ and $n \ge 4$.

If $k = x_{\delta} \leq n/2 - 2$ it follows that $x_{\Delta} \geq n/2 + 1$ and applying a transformation β we deduce from (5) that $f(x_{\delta} + 1, 0, \dots, 0, x_{\Delta}) - f(x_{\delta}, 0, \dots, 0, 1, 0, \dots, 0, x_{\Delta}) > 0$ $3\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{i}}\right)^2 > 0$ since $x_{\Delta}-x_{\delta} \geq 3$. In this case $f(x_{\delta}+1,0,\ldots,0,x_{\Delta}) \leq 1$ $\left(\frac{1}{\sqrt{\delta}}-\frac{1}{\sqrt{\Delta}}\right)^2 (n/2-1)(n/2+1) < \max_D f$, which implies that $(x_{\delta},\ldots,x_{\Delta})$ cannot maximize f on D_1 . If $\min(x_{\delta}, x_{\Delta}) = x_{\Delta}$ we deduce that only $(n/2+1, 0, \dots, 0, n/2-1)$ maximize f on D_1 .

B2. If n is odd and $\min(x_{\delta}, x_{\Delta}) = x_{\delta}$ it follows that $x_{\delta} \leq (n-1)/2$. If $x_{\delta} =$ (n-1)/2 and $x_i = 1$ we get $x_{\Delta} = (n-1)/2$ and

$$f((n-1)/2, 0, \dots, 0, 1, 0, \dots, 0, (n-1)/2) = \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{\Delta}}\right)^2 \left(\frac{n-1}{2}\right)^2 + \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{i}}\right)^2 \frac{n-1}{2} + \left(\frac{1}{\sqrt{i}} - \frac{1}{\sqrt{\Delta}}\right)^2 \frac{n-1}{2} = \left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{\Delta}}\right)^2 \left(\frac{n-1}{2}\right)^2 + \left(\frac{1}{\delta} + \frac{1}{\Delta}\right) \frac{n-1}{2} + (n-1)h(i),$$
ere

wh

$$h(i) = \frac{1}{i} - \frac{C}{\sqrt{i}} \tag{9}$$

and $C = \frac{1}{\sqrt{\delta}} + \frac{1}{\sqrt{\Delta}}$. By considering the function $g(x) = \frac{1}{x} - \frac{C}{\sqrt{x}}$ defined on the interval (δ, Δ) , we get $g'(x) = \frac{C\sqrt{x-2}}{2x^2}$ having a unique root $x_0 = 4/C^2$. Since $\frac{2}{\sqrt{\Delta}} < C < \frac{2}{\sqrt{\delta}}$ it follows that $x_0 \in (\delta, \Delta)$ and g(x) is decreasing on (δ, x_0) and increasing on (x_0, Δ) . Therefore

$$\begin{split} \max_{\delta+1 \leq i \leq \Delta-1} h(i) &= \max\left(h(\delta+1), h(\Delta-1)\right) = h(\Delta-1) = \\ &\frac{1}{\Delta-1} - \left(\frac{1}{\sqrt{\delta}} + \frac{1}{\sqrt{\Delta}}\right) \frac{1}{\sqrt{\Delta-1}}, \text{ since} \\ &0 > \frac{1}{\sqrt{\delta+1}} - \left(\frac{1}{\sqrt{\delta}} + \frac{1}{\sqrt{\Delta}}\right) > \frac{1}{\sqrt{\Delta-1}} - \left(\frac{1}{\sqrt{\delta}} + \frac{1}{\sqrt{\Delta}}\right) \text{ and } \frac{1}{\sqrt{\delta+1}} > \frac{1}{\sqrt{\Delta-1}} \end{split}$$
 It follows that

$$\frac{1}{\sqrt{\delta+1}} \left(\frac{1}{\sqrt{\delta+1}} - \left(\frac{1}{\sqrt{\delta}} + \frac{1}{\sqrt{\Delta}} \right) \right) < \frac{1}{\sqrt{\Delta-1}} \left(\frac{1}{\sqrt{\Delta-1}} - \left(\frac{1}{\sqrt{\delta}} + \frac{1}{\sqrt{\Delta}} \right) \right).$$

Hence in the set of all sequences $(x_{\delta}, \ldots, x_{\Delta}) \in D_1$ such that $x_{\delta} = x_{\Delta} = (n-1)/2$ and $x_{\delta+1} + \ldots + x_{\Delta-1} = 1$ the maximum of f is reached only for $x_{\delta+1} = \ldots = x_{\Delta-2} = 0$ and $x_{\Delta - 1} = 1$.

If $x_{\delta} = \min(x_{\delta}, x_{\Delta}) = (n-3)/2$, $x_i = 1$ and $x_j = 0$ for every $\delta + 1 \leq j \leq \Delta - 1, j \neq i$ we deduce $x_{\Delta} = (n+1)/2$ and $f((n-1)/2, 0, \dots, 0, 1, 0, \dots, 0, (n-1)/2) - f((n-3)/2, 0, \dots, 0, 1, 0, \dots, 0, (n+1)/2) = 2\left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{i}}\right)\left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{\Delta}}\right) > 0$, both sequences having a unity on the same position *i*. If $x_{\Delta} = \min(x_{\delta}, x_{\Delta}) = (n-3)/2$ we also obtain $f((n-1)/2, 0, \dots, 0, 1, 0, \dots, 0, (n-1)/2) - f((n+1)/2, 0, \dots, 0, 1, 0, \dots, 0, (n-1)/2) - f((n+1)/2, 0, \dots, 0, 1, 0, \dots, 0, (n-3)/2) = 2\left(\frac{1}{\sqrt{\delta}} - \frac{1}{\sqrt{\Delta}}\right)\left(\frac{1}{\sqrt{i}} - \frac{1}{\sqrt{\Delta}}\right) > 0$. Otherwise $\min(x_{\delta}, x_{\Delta}) \leq (n-5)/2$ and we deduce as for *n* even that $(x_{\delta}, \dots, x_{\Delta})$ cannot maximize *f* on D_1 . Also, if $x_{\delta+1} = \dots = x_{\Delta-1} = 0$ then maximum of *f* on D_1 is reached for $((n-3)/2, 0, \dots, 0, (n+3)/2)$ or for $((n+3)/2, 0, \dots, 0, (n-3)/2)$ and the proof is complete. \Box

Corollary 3.2. If $\delta = k, x_k = n - k + t, k \le n/2, 0 \le t \le k$, then $\max_D f(x_k, \ldots, x_{n-1})$ is reached only for $(n - k + t, 0, \ldots, 0, k - t)$.

Proof. Let $\Delta = n - 1$ and suppose that $x = (x_k, \ldots, x_{n-1}) \in D$ realizes $\max_D f$. From the hypothesis it follows that $x_k \geq n/2 + t \geq n/2$. If there exists at least an index $i, k + 1 \leq i \leq n - 2$ such that $x_i \geq 1$, by applying operation α we can get another sequence x' such that f(x') - f(x) > 0 by (2) or (4) since $x_{n-1} < n/2$, a contradiction. \Box

This result is also deduced in [8, Theorem 1] by using Kuhn-Tucker theorem.

4. Main results

A conjecture proposed in [3] (and amended in [1]) asserts that if G is a graph of order n satisfying $\delta(G) \ge k$, then R(G) is minimum if and only if $G = \overline{K_{n-k}} + K_k$. We shall prove that every graph $G \in G(n,k)$ having R(G) minimum is a join between a regular graph and a complete graph for every $k \ge \lfloor n/2 \rfloor$.

Let $\mathcal{H}(n,r)$ be the set of graphs of order n which are r-regular. $\mathcal{H}(n,r) \neq \emptyset$ if and only if $r \leq n-1$ and nr is even (see for example [6]).

Theorem 4.1. Let G be a graph of order n and $\delta(G) = k \ge \lfloor n/2 \rfloor$. If its Randić index is minimum, then G is a join between a regular graph and a complete graph, namely:

i) If n is even, then:

 $G = H + K_{n/2}$, where $H \in \mathcal{H}(n/2, k - n/2)$ for k even and $n \equiv 0 \pmod{4}$, k odd and $n \equiv 0 \pmod{4}$, k odd and $n \equiv 2 \pmod{4}$;

 $G = H + K_{(n+2)/2}$, where $H \in \mathcal{H}((n-2)/2, k - (n+2)/2)$ if $k \ge (n+2)/2$ for k even and $n \equiv 2 \pmod{4}$ or

 $G = H + K_{(n-2)/2}$, where $H \in \mathcal{H}((n+2)/2, k - (n-2)/2)$ for k even and $n \equiv 2 \pmod{4}$.

ii) If n is odd, then:

 $G = H + K_{(n+1)/2}$, where $H \in \mathcal{H}((n-1)/2, k - (n+1)/2)$ if $k \ge (n+1)/2$ for k even and $n \equiv 1 \pmod{4}$, k even and $n \equiv 3 \pmod{4}$, k odd and $n \equiv 1 \pmod{4}$, or

 $G = H + K_{(n-1)/2}$, where $H \in \mathcal{H}((n+1)/2, k - (n-1)/2)$ for k even and $n \equiv 1 \pmod{4}$, k even and $n \equiv 3 \pmod{4}$, k odd and $n \equiv 3 \pmod{4}$.

Proof. i) If n is even, from Lemma 3.1 with $\delta = k$ and $\Delta = n - 1$ we deduce that max γ_1 is reached only for $(z_k, \ldots, z_{n-1}) = (n/2, 0, \ldots, 0, n/2)$. It follows that the vertices of degree n-1 induce a complete subgraph $K_{n/2}$ and the remaining vertices, of degree k, a subgraph which is regular of degree k - n/2. This subgraph exists only if $\frac{n}{2}(k - \frac{n}{2})$ is an even number, i.e., when k is even and $n \equiv 0 \pmod{4}$, k is odd and $n \equiv 0 \pmod{4}$ or when k is odd and $n \equiv 2 \pmod{4}$. In these cases any extremal graph is of the form $H + K_{n/2}$, where H belongs to $\mathcal{H}(n/2, k - n/2)$ since max $\gamma_2 = 0$ $(x_{i,j} = z_i z_j \text{ for } n/2 \le i < j \le n - 1)$.

In the remaining case $(k \text{ even and } n \equiv 2 \pmod{4})$ there is no graphical realization for $(n/2, 0, \ldots, 0, n/2)$ and we shall consider the second maximum value for γ_1 . This value is reached only for $x_1 = (n/2 - 1, 0, \ldots, 0, n/2 + 1)$ and $x_2 = (n/2 + 1, 0, \ldots, 0, n/2 - 1)$. In the case of x_1 we deduce that there exists a graphical realization, namely $H + K_{n/2+1}$, where $H \in \mathcal{H}(n/2 - 1, k - n/2 - 1)$ if $k \ge n/2 + 1$ and k is even and $n \equiv 2 \pmod{4}$. In this case also max $\gamma_2 = 0$, hence this second extremal value of γ_1 is also a second extremal value of γ . If the second extremal point is x_2 , there also exists a graphical realization $H + K_{n/2-1}$, where $H \in \mathcal{H}(n/2 + 1, k - n/2 + 1)$ if k is even and $n \equiv 2 \pmod{4}$.

Note that for k = n/2 it is not possible to have k even and $n \equiv 2 \pmod{4}$, the extremal graph is only $\overline{K_{n/2}} + K_{n/2}$. This result was also deduced in [7].

ii) If n is odd then max γ_1 is reached for $x_3 = ((n-1)/2, 0, \dots, 0, (n+1)/2)$ or $x_4 = ((n+1)/2, 0, \dots, 0, (n-1)/2)$. x_3 correspond to a graphical realization $H + K_{(n+1)/2}$, where $H \in \mathcal{H}((n-1)/2, k - (n+1)/2)$ if $k \ge (n+1)/2$ for k even and $n \equiv 1 \pmod{4}$, k even and $n \equiv 3 \pmod{4}$ or k odd and $n \equiv 1 \pmod{4}$. For x_4 we obtain $H + K_{(n-1)/2}$, where $H \in \mathcal{H}((n+1)/2, k - (n-1)/2)$ if k is even and $n \equiv 1 \pmod{4}$, k is even and $n \equiv 3 \pmod{4}$ or k odd and $n \equiv 3 \pmod{4}$.

For k = (n-1)/2 it is not possible to have k odd and $n \equiv 1 \pmod{4}$ and the extremal graph is unique and it coincides with $\overline{K_{(n+1)/2}} + K_{(n-1)/2}$ (see also [7]). Consequently, in all possible cases for k and n odd there exists at least one extremal graph in this list. Also, in all cases $x_{i,j} = z_i z_j$ for $(n-1)/2 \leq i < j \leq n-1$, which implies max $\gamma_2 = 0$.

For *n* odd it was not necessary to consider the second maximum point of γ_1 , which is more difficult to localize relatively to the case when *n* was even.

Theorem 4.2. If G is a graph of order n, n is even and $\delta(G) = n/2 - 1$, then R(G) is minimum only if $G = \overline{K_{n/2+1}} + K_{n/2-1}$.

Proof. By Lemma 3.1 $f(x_{n/2-1}, \ldots, x_{n-1})$ is maximum in D only for $x_{n/2-1} = n/2, x_{n/2} = \ldots = x_{n-2} = 0$ and $x_{n-1} = n/2$. This degree distribution has no graphical realization since in this case $x_{n-1} = n/2$ implies $\delta(G) \ge n/2$. This function has in D_1 two extremal points and one of them, namely $(n/2+1, 0, \ldots, 0, n/2-1)$ has a graphical realization, $\overline{K_{n/2+1}} + K_{n/2-1}$. Since $x_{i,j} = x_i x_j$ for $n/2 - 1 \le i < j \le n-1$ it follows that max $\gamma_2 = 0$ and this graph is the single graph with a minimum Randić index in G(n, n/2 - 1) when n is even.

Denote by F(n,k) the class of graphs G of order n without loops or multiple edges and $\delta(G) \ge k$, i.e., $F(n,k) = \bigcup_{k \le k' \le n-1} G(n,k')$. The problem of finding minimum Randić index in this class of graphs, raised in [3], can be solved for every $k \ge \lfloor n/2 \rfloor$.

Corollary 4.3. i) If n is odd and $(n-1)/2 \le k \le n-1$ then

$$\min_{G \in F(n,k)} R(G) = \frac{n}{2} - \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{n-1}}\right)^2 (n^2 - 1)/8;$$

ii) If n is even and $n/2 - 1 \le k \le n - 1$ then

$$\min_{G \in F(n,k)} R(G) = \begin{cases} \frac{n}{2} - \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{n-1}}\right)^2 n^2/8, & \text{if } k \text{ is even and } n \equiv 0 \pmod{4}, \\ k \text{ is odd and } n \equiv 0 \pmod{4}, \\ or \ k \text{ is odd and } n \equiv 0 \pmod{4}, \\ \frac{n}{2} - \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{n-1}}\right)^2 (n^2 - 4)/8, & \text{if } k \text{ even and } n \equiv 2 \pmod{4}. \end{cases}$$

Proof. We have

$$\max_{k \le k' \le n-1} \left(\frac{1}{\sqrt{k'}} - \frac{1}{\sqrt{n-1}} \right)^2 = \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{n-1}} \right)^2.$$

Also, if n is even, $n \equiv 2 \pmod{4}$ and k is even, then k + 1 is odd and it is necessary to show that

$$\left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{n-1}}\right)^2 (n^2 - 4) > \left(\frac{1}{\sqrt{k+1}} - \frac{1}{\sqrt{n-1}}\right)^2 n^2.$$
(10)

(10) is equivalent to

$$\frac{n^2}{4} \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) \left(\frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} - \frac{2}{\sqrt{n-1}} \right) > \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{n-1}} \right)^2.$$

Since

$$\frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} - \frac{2}{\sqrt{n-1}} \ge \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{n-1}},$$

it is sufficient to show that

$$\frac{n^2}{4}\left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}\right) > \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{n-1}}$$

for every $1 \le k \le n-2$. This property can be proved easily since function $f(k) = \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}$ is strictly decreasing on the interval [1, n-2].

Concluding remarks

Using an approach different from that of Pavlović and Divnić [7, 8] we have obtained more information about the extremal points of the function γ_1 , which allowed us to characterize graphs of order n and minimum degree equal to k having minimum Randić index for every $\lfloor n/2 \rfloor \leq k \leq n-1$ and also for n even and k = n/2 - 1. The conjecture attributed to Delorme, Favaron and Rautenbach in [7], namely the Randić index for graphs in G(n,k), where $1 \leq k \leq n/2$ attains its minimum value only for $\overline{K_{n-k}} + K_k$, was solved by Li, Liu and Liu [5].

References

- AOUCHICHE M., HANSEN P., On a conjecture about the Randić index, Discrete Math., 2(307), 2007, pp. 262–265.
- [2] BOLLOBÁS B., ERDÖS P., Graphs of extremal weights, Ars Combin., 50, 1998, pp. 225–233.
- [3] DELORME C., FAVARON O., RAUTENBACH D., On the Randić index, Discrete Math., 1(257), 2002, pp. 29–38.
- [4] FAJTLOWICZ S., Written on the Wall, Conjectures of the Program Galatea Gabriella Graffiti, University of Houston, 1998.
- [5] LI X., LIU B., LIU J., Complete solution to a conjecture on Randić index, European Journal of Operational Research, 2009, doi: 10.1016/j. ejor. 2008.12.010.
- [6] LOVÁSZ L., Combinatorial problems and exercises, Akadémiai Kiadó, Budapest, 1979.
- [7] PAVLOVIĆ L., On the conjecture of Delorme, Favaron and Rautenbach about the Randić index, European J. of Operational Research, 180, 2007, pp. 369–377.
- [8] PAVLOVIĆ L., DIVNIĆ T., A quadratic programming approach to the Randić index, European J. of Operational Research, 176, 2007, pp. 435–444.
- [9] RANDIĆ M., On characterization of molecular branching, J. Amer. Chem. Soc., 97, 1975, pp. 6609–6615.
- [10] TODESCHINI R., CONSONNI V., Handbook of molecular descriptors, Wiley-VCH, Weinheim, 2000.