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Abstract. In this paper all graphs G of order n and minimum degree
0(G) = k having minimum Randi¢ index R(G) are determined for k > |n/2].
Each extremal graph is the join between a regular graph of order n — s and a
complete graph of order s (where s € {n/2, (n+2)/2, (n—2)/2} for n even and
s € {(n+1)/2,(n —1)/2} for n odd). This yields an alternative proof in the
case of dense graphs to that proposed by Li, Liu and Liu [5] who very recently
solved a long-standing conjecture on Randié¢ index. Also, the minimum value
of this index in the class of graphs of order n and §(G) = k is determined for
k>(n—-1)/2.

Key words: Randi¢ index; complete graph; regular graph; non-linear pro-
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1. Introduction

The Randi¢ index R(G) of a graph G without isolated vertices was introduced in
1975 by Milan Randié¢ under the name of ”branching index” [9] as follows:

R(G)= > (du)d(v) "/,

wweE(G)
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where d(x) denotes the degree of a vertex « € V(G). The Randi¢ index is also called
”Randié¢ connectivity index” or ”connectivity index” [10].

Randi¢ proposed this index in order to quantitatively characterize the degree
of branching of the molecular skeleton, which is a critical factor for some physico-
chemical properties of alcanes. Let G(n,k) be the set of graphs without loops or
multiple edges having n vertices and the minimum degree 6(G) = k; the maximum
degree will be denoted by A(G).

Fajtlowicz mentioned [4] that Bollobds and Erdés asked for the minimum value of
the Randié¢ index for graphs G € G(n, k). The solution of this problem turned out to
be difficult.

For two vertex disjoint graphs, G and H, let G + H denote their join, i. e., the
graph obtained by joining by edges every vertex of G with all vertices of H; we shall
also denote by K,, the complement of K,,, which consists of n isolated vertices.

In [2] Bollobéds and Erdds solved the problem for £ = 1 and proved that the

extremal graph is unique and it coincides to K; ,—1 = K,_1 + K;; for k = 2 the
problem was settled in [3] and the extremal graph is K, _s + Ks. Delorme, Favaron
and Rautenbach also gave a conjecture about this problem in [3]:
In the set of graphs G of order n with §(G) > k the unique extremal graph is K,,_j +
Kj; this conjecture is valid only for k¥ < n/2 (see also [1]). Pavlovi¢ [7] using a
quadratic programming approach and Kuhn-Tucker theorem showed that in the class
G(n, [n/2]) the unique extremal graph is K,_|, /2] + K|n/2)-

In this paper, using the quadratic programming model for this problem proposed
by Pavlovié¢ and Divnié [8] and discrete optimization methods it is shown that every
extremal graph in the class G(n, k) is the join between a regular graph and a complete
graph (of order n/2, (n+2)/2 or (n—2)/2 for n even and (n+1)/2 or (n—1)/2 for n
odd) for every k > |n/2|. These extremal graphs agree with the graphs found by Li,
Liu and Liu [5] who determined by a different method all extremal graphs in G(n, k)
for1<k<n-1.

2. Nonlinear programming model of Pavlovi¢ and Divnié

For a graph G of order n without loops or multiple edges denote by § = §(G), A =
A(G), n; the number of vertices of degree i for § < i < A (ng+ns+1+...4+na =n) and
by x; ; > 0 the number of edges joining the vertices of degrees ¢ and j (6 <1i,5 < A).

Then
T s
RG) = Y 2
5Si§jSA\/ﬁ

and Zf:(; xij+2x;; =in; for 6 <i < A;x; <mynj for § <i<j <Ay z;; < ("2)
o

J
for 6 <1 < Ajz;; = x;,; are nonnegative integers for 6 <i < j < A.
We can associate to the problem of minimizing R(G) the following nonlinear min-

imization problem:
. Zij
minr(zs,s,...,TAA) = E —
s<i<j<a VY
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subject to
A

in,j + 2z, =iz for § < i <A,

j=3s

J#i
zZs+tzsi1+ ... +z2a=mn; (1)

T < zizy for 6 < i < j <A
2 .
zi; < 9 for 6§ <i < A;

x;; = x;; and z; are nonnegative integers for 6 <14 <j < A.

Function r can also be written as [8]:

T(l‘g,(;, e er,A) =

n o 1 ( 1 1 )2
575 — 7| Tij-
2 26§i<j§A Vi Vi

The problem of minimization of r becomes the problem of maximization of

11\’
Y(@s,641,- -1 Ta—1,4) = Z (ﬂﬂ) Ty

S<i<j<A

2
By denoting y; ; = 2ziz; — x5 for 0 <i < j < Aand y;; = ( Z) —z;; for 6 <i <A

2
we get
Y(@55415- - xa-1,4) = V1(25,- -, 28) + V2 (Ys,6415 - -»Ya—1,A),
1 1\? 1 1\?
where 7, = Z < — ) zizj and v = — Z ( - ) Yij-
§<i<j<A Vi Vi 5<i<j<A Vi Vi

We have y; ; > 0for 6 <i < j < Ajy; >0foréd <i<Aandvy; =y;; are
integers for § <i < j < A. It is clear that

maxy < max-y; + maxysa.

We have maxy, = 0 and this holds if and only if 3, ; = 0 for 6 < i < j < A, or
equivalently, x; ; = z;%; for all indices § <i < j < A.

In the next section we shall consider the problem of maximizing v; and all se-
quences (zg,...,2a) reaching the first and the second maximum values of v; will be
found. These sequences which have graphical realizations also reach the maximum of
72, hence the maximum of ~.



458 1. Tomescu et al.

3. A technical lemma

Denote ¢(n) = max,,n,—. n1ng; it follows that ¢(n) = n?/4 for n even (n; =
ni,no€EZ

ny = n/2) and o(n) = (n? —1)/4 for n odd ({n1,n2} = {(n —1)/2,(n +1)/2}). If
1<d<A<n—-1,6A €N, consider the function

1 1\’
flas, xs41,. .. xA) = Z <\ﬂ_\/§) T

S<i<j<A

and the domains D = {(xs,z541,...,2A) : ; € IN for § < i < A,Zfz(gzi =n};
D, = D\{(n/2,0,...,0,n/2)} for n even and D; = D\{((n — 1)/2,0,...,0,(n +
1)/2),((n+1)/2,0,...,0,(n—1)/2)} for n odd.

Lemma 3.1. All points where f is mazimum in D and D1, respectively, are the fol-
lowing: i) If n > 4 is even, then maxp f(zs,...,xa) is reached for (n/2,0,...,0,n/2)
and maxp, f(zs,...,za) for (n—2)/2,0,...,0,(n+2)/2) and ((n+2)/2,0,...,0, (n—

2)/2); i) If n > 5 is odd, then maXD f(zs,...,zA) is attained for ((n—1)/2,0,...,0,
(n+1)/2) and ((n+1)/2,0,. (n—1) /2) and maxp, f(zs,...,xa) when (xs,...2A)
is located into the set {((n - )/2 0,...,0,(n+3)/2),((n+3)/2,0,...,0,(n —3)/2),
((n—1)/2,0,...,0,1,(n —1)/2)}.

Proof. A. First we shall determine the maximum of f(zs,...,za) when (zs,...,zA)
€D. Ifxsy1=...=2xa_1 =0 then

F(@s, .. oa) = <¢13 - \/IZ>2“$A’

and the result is obvious since x5 + xA = n.

Otherwise, denote by ¢ (6 + 1 < i < A — 1) the smallest index such that x; > 1
and by j (6 +1 < j < A —1) the greatest index such that ; > 1; obviously ¢ < j.
Denote by a and 3 the operations consisting of replacing = = (xs,...,2a) € D
by ' = (25,0,...,0,24,...,2;-1,2; — 1,0,...,0,2ao + 1) € D and by 2" = (x5 +
1,0,...,0,z; — L, z11,...,24,0,...,0,za) € D, respectively. We have:

ror-11= (35 ~5) tom v en (=) (G5 -58)
(G G- ) G ) ()
s (G- 6) (7).

% 7 ﬁ>W %fork_a,z,wl § — 1, we can write
f(x/)—f(x)>(,—)2(x5+wi+xi+1+...+xj—xA—1) (2)
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and this inequality is strict if at least one of x5, %, Ziy1,...,2;-1 is different from
zero. Similarly,

F(a")~f(z) = (% - }) (wi—25—1)+2511 (\jg _ }) (15 e 1) N

T (\}3—\2) (\%Jr\}{_}j)JrM (\}5_\}»

which implies:

1 1)
") — f(z >(—> zi+zTipi+... .tz +ra—x5—1 3
f()f()_\/gﬁ(z i+1 i ) (3)
and this inequality is strict if at least one of z;41,...,7;,zA is different from zero.
If i = j we get

@) - fz) > (ff - %

the inequality being strict if x5 > 1 and

2
) (xs +x; —xp — 1), (4)

") - fla) > <\}5 -

and this inequality is strict if xa > 1.

We shall prove that at least one of the differences f(z') — f(x) and f(z") — f(z) is
greater than zero, which implies that all sequences (zs,...,2a) € D realizing maxi-
mum of f satisfy z541 = ... = xa_1 = 0. Consider first the case when ¢ = j. It is clear
that if s = xa = 0 then f(xs,...,2a) = 0 which implies that (0,...,0,2;0,...,0)
cannot maximize f. Otherwise, suppose that x5 > 1. If z5+x; —xa —1 > 0 then (4)
is strict and it follows that f(z') > f(z) and x cannot maximize f on D. Otherwise,
rs5+x;—xa—1 < —1. In this case xao > xs+x;, hence xao+x; —xs—1> 22, —1 > 1,
which implies f(2”) > f(z) and z also cannot maximize f. If xa > 1 the same con-
clusion follows since (5) is strict.

Suppose that ¢ < j. In this case z; > 0,z; > 0 and both inequalities (2) and
are strict. If x5+, +...+x; —xa —1 > 0 then from (2) it follows that f(z’) > f(
Otherwise, A > zs+x;+. . .+xj and x;+. . .4z +xA—25—1 > 2(z;+. . .+2;)—1 >0,
which implies f(z”) > f(x) from (3).

Consequently, all sequences maximizing f have the form (n3,0,...,0,n3), where
n1 + ny = n; in this case

(11,0, 0,mz) = (% - jE)Qnm < (;5 - Jlgfgp(m

and the conclusion follows.
B. Consider that ¢ = (zs,...,2a) € D1. If 2501 = ... = za_1 = 0 then

f(ac57...,xA): <\%_\/1Z

> (xa +x; — x5 — 1), (5)

(3)
x)

2
) rsxa, where x5 + xaA = n and the result is obvious.
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If z511+ ...+ 2a_1 > 2 then we have seen that by an operation a or § we can find
sequences y, z € D such that f(x) < f(y) < f(z), hence z cannot maximize f on Dj.
If £541 +...+xa_1 = 1 we shall consider other two subcases: Bl: n is even; B2: n
is odd.

B1. If n is even we shall prove that x cannot maximize f if 541 +...+2za_1 =1,
i.e., there exists an index 7,0 +1 < ¢ < A — 1 such that z; = 1 and z; = 0 for every
0+1<j<A—1andj#i.

Let k = min(zs,2a) < n/2 — 1. Without loss of generality suppose that k = zs.
If k =n/2—1, then 25 = n/2 — 1 and Ao = n/2. Applying transformation a we
deduce that

f(n/2—-1,0,...,0,n/2+1) — f(n/2-1,0,...,0,1,0,...,0,n/2) =
GG o) (o) 3 (sl -
(")

n—2 n-—1 1

5 7 +ﬁ>0’ (6)

which will prove that (n/2—1,0,...,0,1,0,...,0,n/2) cannot maximize f on D;. We
have

We shall prove that

n—2 n-—1 1 n—2 n—1

1
Vo Vi VAT Vi Vil VAT

n—2 n—1
Consider now the function g(x) = ——— — —, where x € [1,n—3]. Its derivative
1 n—1 n—2
"z) == — is negative since this is equivalent to z3(n —1)2 <
g'(z) 2((x+1)\/m xﬁ) g q (n—1)

(x+1)3(n —2)%, or
23 (2(2n —3) = 3(n —2)?) —=3(n —2)%x — (n —2)? < 0. (7)
We deduce that z(2n — 3) < 3(n —2)? for x < n — 3 since n — 3 < 3(n — 2)2/(2n — 3)

is equivalent to n? — 3n + 3 > 0 and this holds for n > 4. It follows that (7) is
true, which implies that ¢ is strictly decreasing on the interval [1,n — 3]. We get

n-2 n-1 + ! > n-2 n-1 + ! It remains to show that
— — . W
Ve Vi+1l VvVn—1"+vn-3 Vvn-2 +vn-1
n—2 n—1 1

>0 (8)

\/n—3_\/n—2+\/n—1

for every n > 4. By elementary calculation we deduce that (8) is equivalent to
2(n —2)2y/(n—1)(n—3) > n3 — 7% + 15n — 11 for every n > 4. But 2(n —
2)2\/(n—1)(n —3) > 2(n—2)%*(n—3) > n® —Tn?+ 15n — 11 since the last inequality
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is equivalent to n® — 7n? + 17n — 13 > 0, which is true for n > 4. Consequently, (6)
is true for every 1 <0 <i< A <n—1andn >4.

If k =25 < n/2—2it follows that xp > n/2+ 1 and applying a transformation
8 we deduce from (5) that f(zs + 1,0,...,0,za) — f(2s,0,...,0,1,0,...,0,2A) >

2
1 1
3| —=——= > 0 since xao — x5 > 3. In this case f(xzs + 1,0,...,0,za) <
<\/S \/5> I )

(\}g - \;E) (n/2-1)(n/2+1) < max f, which implies that (zs,...,za) cannot
maximize f on Dq. If min(zs, za) = xa we deduce that only (n/2+1,0,...,0,n/2—1)
maximize f on Dj.

B2. If n is odd and min(zs,za) = x5 it follows that x5 < (n — 1)/2. If z5 =
(n—1)/2 and z; =1 we get o = (n — 1)/2 and

f((n—1)/2,0,...,0,1,0,...,0,(n—1)/2) =
G- () G0 7 Gm) T

( 151A>2<n21>2+<(15+i)n21+(n1)h(i),

where . ©
h(i) = - — —& 9
0=1-5 )
dc=- 4+ L B idering the function g(z) = ~ — -°— defined on th
an = —+ —. considering the function g(z) = = — — defined on the
Vi VA i N
. / C\/E - 2 . . 2 .
interval (0,A), we get ¢'(z) = —om having a unique root zy = 4/C*. Since
x

2 2

— < C < — it follows that zg € (§,A) and g(z) is decreasing on (4§, xg) and
VA NG 0 € ( ) g9(x) g (6, o)
increasing on (zg, A). Therefore

st DEE h(i) =max (h(d +1),h(A—1))=h(A—-1) =

1 1 1 1 1 1 1 1
0> — > - —=4+ —== d > .
NC eS| ( 3 A) A1 (\/5 \/A) Tl VAT

It follows that

1 1 1 1 1 1 1 1
—(—=+—==)]< —(—=+—=)]-
\/6+1<\/6+1 <\/5 \/E)> \/A—l( A-1 <\/5 \/E)>
Hence in the set of all sequences (zs,...,za) € D; such that zs = za = (n—1)/2 and

Ts41+ ... +xa—1 = 1 the maximum of f is reached only for 5,1 =... =2ao_2=0
and xao_1 = 1.
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If 25 = min (z5,24) = (n—3)/2, x; = land x; = O forevery d+1 < j < A—1,j #1¢
we deduce zpo = (n+1)/2 and f((n —1)/2,0,...,0,1,0,...,0,(n —1)/2) — f((n —
3)/2,0,...,0,1,0,...,0,(n + 1)/2) 2(1 1)(1 1)>Obth

,0,...,0,1,0,...,0,(n = ——-—=|—=-——= , both se-

Ve Vi) \Vs o VA

quences having a unity on the same position i. If zto = min(zs,za) = (n—3)/2 we also
obtain f((n—1)/2,0,...,0,1,0,...,0,(n—1)/2)— f((n+1)/2,0,...,0,1,0,...,0,(n—
1

3)/2) =2 (\}S — % 7 % > 0. Otherwise min(zs,2a) < (n —5)/2 and
we deduce as for n even that (xs,...,2a) cannot maximize f on Dy. Also, if 2511 =
... =za—1 = 0 then maximum of f on Dy is reached for ((n—3)/2,0,...,0,(n+3)/2)
or for ((n+3)/2,0,...,0,(n — 3)/2) and the proof is complete. O

Corollary 3.2. If § =k,xy =n—k+t,k <n/2,0 <t <k, then maxp f(x,...
Xp—1) is reached only for (n — k +1t,0,...,0,k —t).

)

Proof. Let A =n — 1 and suppose that x = (zg,...,2n—1) € D realizes maxp f.
From the hypothesis it follows that xp > n/2 +t > n/2. If there exists at least an
index 7,k +1 < i < n — 2 such that z; > 1, by applying operation o we can get
another sequence ' such that f(z') — f(xz) > 0 by (2) or (4) since z,—1 < n/2, a
contradiction. O

This result is also deduced in [8, Theorem 1] by using Kuhn-Tucker theorem.

4. Main results

A conjecture proposed in [3] (and amended in [1]) asserts that if G is a graph of
order n satisfying §(G) > k, then R(G) is minimum if and only if G = K, + K.
We shall prove that every graph G € G(n, k) having R(G) minimum is a join between
a regular graph and a complete graph for every k > |n/2].

Let H(n,r) be the set of graphs of order n which are r-regular. H(n,r) # 0 if and
only if r <n —1 and nr is even (see for example [6]).

Theorem 4.1. Let G be a graph of order n and 6(G) =k > |n/2|. If its Randié¢
index is minimum, then G is a join between a regular graph and a complete graph,
namely:

i) If n is even, then:

G = H+ K, 3, where H € H(n/2,k —n/2) for k even and n =0 (mod 4), k odd and
n =0 (mod 4), k odd and n = 2 (mod 4);

G = H+ K(y49)/2, where H € H((n—2)/2,k—(n+2)/2) if k > (n+2)/2 for k even
and n = 2 (mod 4) or

G =H+ K22, where H € H((n+2)/2,k—(n—2)/2) for k even and n = 2 (mod
4).

ii) If n is odd, then:

G =H+ Knq1)/2, where H € H((n—1)/2,k—(n+1)/2) if k > (n+1)/2 for k even
and n =1 (mod 4), k even and n = 3 (mod 4), k odd and n = 1 (mod 4), or
G=H+Kp_1y2, where He H((n+1)/2,k—(n—1)/2) for k even and n = 1 (mod
4), k even and n = 3 (mod 4), k odd and n = 3 (mod 4).
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Proof. 1) If n is even, from Lemma 3.1 with 6 = k and A =n — 1 we deduce that
max 7y, is reached only for (zx,...,2z,—1) = (n/2,0,...,0,n/2). It follows that the
vertices of degree n — 1 induce a complete subgraph K, /> and the remaining vertices,
of degree k, a subgraph which is regular of degree k —n/2. This subgraph exists only
if g(k — g) is an even number, i.e., when k is even and n = 0 (mod 4), & is odd and

n = 0 (mod 4) or when k is odd and n = 2 (mod 4). In these cases any extremal
graph is of the form H + K, /5, where H belongs to H(n/2,k —n/2) since maxy; = 0
(l‘iﬂ' = ZiZ%j for ’I’L/2 <i<j<n-— 1)

In the remaining case (k even and n = 2 (mod 4)) there is no graphical re-
alization for (n/2,0,...,0,n/2) and we shall consider the second maximum value
for v1. This value is reached only for z; = (n/2 — 1,0,...,0,n/2 + 1) and z9 =
(n/2+1,0,...,0,n/2 —1). In the case of z; we deduce that there exists a graphical
realization, namely H + K, /211, where H € H(n/2—1,k—n/2—1)if k> n/2+1 and
k is even and n = 2 (mod 4). In this case also max -y, = 0, hence this second extremal
value of 7, is also a second extremal value of . If the second extremal point is xs,
there also exists a graphical realization H + K, /o1, where H € H(n/2+1,k—n/2+1)
if k is even and n = 2 (mod 4).

Note that for kK = n/2 it is not possible to have k even and n = 2 (mod 4), the
extremal graph is only K,/ + K, /2. This result was also deduced in [7].

ii) If n is odd then max~; is reached for z3 = ((n — 1)/2,0,...,0,(n + 1)/2)
or 4 = ((n+1)/2,0,...,0,(n —1)/2). x3 correspond to a graphical realization
H + K(n41y/2, where H € H((n—1)/2,k = (n+1)/2) if k > (n+1)/2 for k even and
n =1 (mod 4), k even and n = 3 (mod 4) or k odd and n = 1 (mod 4). For z4 we
obtain H + K,_1y/2, where H € H((n +1)/2,k — (n —1)/2) if k is even and n = 1
(mod 4), k is even and n = 3 (mod 4) or & is odd and n = 3 (mod 4).

For k = (n — 1)/2 it is not possible to have k odd and n = 1 (mod 4) and the
extremal graph is unique and it coincides with K(,11)/2 + K—1)/2 (see also [7]).
Consequently, in all possible cases for k and n odd there exists at least one extremal
graph in this list. Also, in all cases z; ; = z;z; for (n —1)/2 <i < j < n — 1, which
implies max 2 = 0.

For n odd it was not necessary to consider the second maximum point of 1, which
is more difficult to localize relatively to the case when n was even. (Il

Theorem 4.2. If G is a graph of order n, n is even and 6(G) = n/2 — 1, then
R(G) is minimum only if G = Ky, 941 + Ky ja_1-

Proof. By Lemma 3.1 f(x,/2-1,...,2Zn—1) is maximum in D only for x5 =
n/2,Tp2 = ... = Ty_p = 0 and z,_1 = n/2. This degree distribution has no
graphical realization since in this case x,,—1 = n/2 implies §(G) > n/2. This function
has in D two extremal points and one of them, namely (n/241,0,...,0,n/2—1) has
a graphical realization, K, o1+ K, /2—1. Since z; j = x;2; forn/2—-1<i<j<n-1
it follows that max s = 0 and this graph is the single graph with a minimum Randié
index in G(n,n/2 — 1) when n is even. |

Denote by F(n, k) the class of graphs G of order n without loops or multiple edges
and §(G) > k, i.e., F(n,k) = Up<pr<,,_1 G(n, k). The problem of finding minimum
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Randi¢ index in this class of graphs, raised in [3], can be solved for every k > |n/2].

Corollary 4.3. i) If n is odd and (n —1)/2 <k <n—1 then

n 1 1 \?,,
Gergig,k)R(G) 2 (\/@ n— 1) o /%

il) If n is even and n/2 — 1 <k <n—1 then

2
5 = (ﬁ - 71171> n?/8, if k is even and n = 0 (mod 4),
. - k is odd and n = 0 (mod 4)
Gerggzl,k) R(G) = , or k is odd and n = 2 (mod 4);
5 - <ﬁ— 7;171) (n®> —4)/8, ifk even and n = 2 (mod 4).

Proof. We have

Also, if n is even, n = 2 (mod 4) and k is even, then k + 1 is odd and it is necessary
to show that

(10) is equivalent to

% (=) G e )~ G )

Since
o2 1
VE VE+1 Vn—1"Vk n—1

it is sufficient to show that

n? ( 1 1 ) < i 1
4 \Vk VE+1) VE Vn-1
for every 1 < k < n — 2. This property can be proved easily since function f(k) =

1 1
v/ A is strictly decreasing on the interval [1,n — 2]. O

E
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Concluding remarks

Using an approach different from that of Pavlovié and Divnié [7, 8] we have ob-
tained more information about the extremal points of the function 1, which allowed
us to characterize graphs of order n and minimum degree equal to k£ having minimum
Randi¢ index for every |n/2] < k <n —1 and also for n even and k =n/2 — 1.

The conjecture attributed to Delorme, Favaron and Rautenbach in [7], namely the
Randié¢ index for graphs in G(n,k), where 1 < k < n/2 attains its minimum value
only for K, _j, + K}, was solved by Li, Liu and Liu [5].
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