ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 14, Number 2, 2011, 159-182

PARES — A Model for Parallel
Recursive Programs

Virginia NICULESCU

Faculty of Mathematics and Computer Science, Babeg-Bolyai University,
1 M. Kogalniceanu, Cluj-Napoca, Romania

E-mail: vniculescu@cs.ubbcluj.ro

Abstract. PowerList, ParList, and PList theories and their multidimen-
sional extensions PowerArray, ParArray, and PArray are well suited to ex-
press recursive, data-parallel algorithms. Their abstractness is very high and
assures simple and correct design of parallel programs. Base on these theories
we define a model of parallel computation with a very high level of abstraction —
PARES (Parallel Recursive Structures). A model of parallel computation, to be
useful must address the following set of requirements: abstractness, software de-
velopment methodology, architecture independence, cost measures, no preferred
scale of granularity, efficiently implementable. We show in this paper that all
these requirements are fulfilled for the proposed model.

Key-words: parallel programming, model, data-structures, divide&conquer,
recursion.

1. Introduction

PowerList, ParList, and PList are data structures introduced by J. Misra [12]
and J. Kornerup [9], which can be successfully used in a simple and provable correct,
functional description of parallel programs, which are divide and conquer in nature.
They allow working at a high level of abstraction, especially because the index no-
tations are not used. To assure methods that verifies the correctness of the parallel
programs, algebras and structural induction principles are defined on these data struc-
tures. Based on the structural induction principles, functions and operators, which
represent the parallel programs, are defined. These data structures can be easily ex-
tended to the multidimensional case, and the resulted structures are PowerArray,



160 V. Niculescu

ParArray, and PArray. They allow the specification of recursive parallel programs
that works with multidimensional data in more efficient and suggestive way. Working
with multidimensional arrays instead of nested lists also brings important advantages
at the design phase.

These theories can be considered the base for a model of parallel computation
with a very high level of abstraction. The proposed model PARES (Parallel Recur-
sive Structures) includes Power List, ParList, and PList theories and their multidi-
mensional extensions Power Array, ParArray, and PArray together with the data-
distributions defined on them, that allow the definition of parallel programs with
different scale of granularity. The programs are defined as functions on the specified
structures and their correctness is assured by using structural induction principles.

A model of parallel computation, to be useful must address both issues, abstraction
and effectiveness, which are summarized in the following set of requirements: abstract-
ness, software development methodology, architecture independence, cost measures,
no preferred scale of granularity, efficiently implementable [19]. We will prove that all
these requirements are fulfilled for the PARES model defined based on these theories.

The first three requirements are easily proved based on the definitions of data
structures and corresponding algebras — these are analyzed in Section ??7. In this
kind of abstract models the parallelism is implicit, and hence the decomposition,
communication, synchronization and mapping are implicit (if the models classifica-
tion specified in [19] is considered). So, generally, unbounded parallelism (the number
of processes is not limited) is analyzed using these structures. Still, the most practical
approach of bounded parallelism can be introduced, and so, the distributions, too.
Also, based on these, realistic cost measures can be rigorously defined. Section 77
presents how distributions may be defined on these special kinds of data structures,
and also how the functions defined on them could be transformed to accept distribu-
tions. In this way, the high level of abstraction of these theories is reconciled with
the performance, and so, together, they could form a parallel computation model.

For other similar theories, these kinds of enhancement have been analyzed, too.
There is a clear necessity to reconcile abstraction with performance, as it is stated by
S. Gorlatch in [5].

BMF formalism [2, 5] is based on recursion too, and there the notion of home-
omorphism is essential. The distributions have been introduced as simple functions
that transform a list into a list of lists. But, since few of the key distributions, such
as block decomposition, can be defined in this calculus, so various hybrid forms, often
called skeletons [3] have been introduced to bridge the gap.

Shape theory [6] is a more general approach. Knowledge of the shapes of the data
structures is used by many cost models [7]. Static shape analysis can be applied to
those programs for which the shape of the result is determined by that of inputs,
i.e. the shapely programs. PowerList, ParList, and PList theories allow us to define
shapely programs, but in a very elegant and simple way. They have proved to be
highly successful in expressing computations that are independent of the specific data
values.



PARES — A Model for Parallel Recursive Programs 161

2. Power, Par, and P Theories

PowerList. A PowerList is a linear data structure whose elements are all of the
same type. The length of a PowerList data structure is a power of two. The type
constructor for PowerList is:

PowerList : Type x N — Type (1)

and so, a PowerList with 2" elements of type X is specified by PowerList.X.n (n =
loglen.l). A PowerList with a single element a is called singleton, and it is denoted
by [a] . If two PowerList structures have the same length and elements of the same
type, they are called similar.

Two similar PowerLists can be combined into a PowerList data structure with
double length, using two constructors: tie (p | ¢) and zip (p f ), yielding, respectively,
the concatenation and interleaving of two similar lists.

There is no way to directly address a particular element. PowerList algebra is
defined by these operators and by axioms that assure the existence of unique decom-
position of a PowerList, using one of tie or zip operator; and the fact that tie and
zip operators commute [9]:

(plg)b(ulv)=(phu)|(ghv)

ParList. The ParList data structure is analogue with PowerList, with the differ-
ence that the number of the elements is not a power of two. The type constructor for
ParList is:

ParList : Type x N* — Type (2)

and a ParList with n elements of type X is specified by ParList.X.n.
It is necessary to use other two constructor operators: cons(<) and snoc(>); they
allow adding an element to a ParList at the beginning or at the end of the ParList.
Axioms of ParList algebra express like those from PowerList algebra, the exis-
tence of a unique decomposition of a ParList, using constructor operators, the com-
mutativity of tie and zip operators, and some axioms that make connection among
operators [9].

PList. PList data structure is a generalization of PowerList, constructed with n-way
| and f operators; e.g. for positive n the n-way | operator takes n similar PLists
and returns their concatenation. While the PowerList notation is tied to radix 2,
the PList notation enables us to state properties and algorithms in the radix that is
more suited for the problem. The PList notation is even more general; it allows the
use of mixed radices in specifications and facilitates algebraic reasoning about such
specifications [10].

A PList is a non-empty linear data structure, whose elements are all of the same
type, either scalars from the same base type, or recursively PLists that enjoy the
same property. Square brackets are used to denote ordered quantification in PList



162 V. Niculescu

algebra. The expression [|i : ¢ € T : p.i] is a closed form for the application of the
n-way operator |, applied to the PList elements p.i. The notation ¢ € @ means that
the terms of the expression are written from 0 trough n—1 in the numerical order.
The PList axioms, define also the existence of unique decomposition of PList using
constructor operators [9].

PowerArray, ParArray, PArray. The type function for Power Array data struc-
ture

PowerArray : Type x (N)" — Type (3)

has one argument a type (X) and n arguments that are positive natural numbers.
This constructor returns the type of all data structures with elements of type X and
with 2"¢ elements on the i—th dimension. For example, if we consider that the first
dimension is for columns and the second for rows, Power Array.N.2.3 is the type of
all matrices with 22 columns and 23 rows, with natural numbers as elements.
If p, ¢ are two similar Power Arrays we can use two kinds of construction operators

tie and zip:

u=pliq

v=pH; g, where i =0, 1.

For example, if p,q € PowerArray.X.m.n and v = p |o ¢, v = p o ¢ then u,v €
PowerArray.X.(m+1).n. Now, u is the matrix formed by the columns of p followed
by the columns of ¢ and v is the matrix whose columns are alternatively taken from
p and q.

The types of the Power Array constructors are as follows:

[]: X = PowerArray.X.0

Jo. : PowerArray. X.m.n x PowerArray.X.m.n — PowerArray.X.(m+ 1).n
1.+ Power Array.X.m.n x PowerArray.X.m.n — PowerArray. X.m.(n + 1)
o. : Power Array.X.m.n x PowerArray.X.m.n — PowerArray.X.(m +1).n
1. 2 PowerArray.X.m.n x Power Array.X.m.n — PowerArray.X.m.(n+ 1)

In a similar way the ParList and PList theories are extended to ParArray and
PArray theories.

3. Abstractness, Software development methodology,
Architecture independence

The definition of these notations and data structures implies a very high degree
of abstractness.

The correctness of the parallel programs specified with these notations can be
proved based on the algebras and structural induction principles defined on the cor-
responding data structures.

On PowerList data structures the corresponding induction principle, that allows
function definitions, and the proving of Power List properties, is defined as follows:



PARES — A Model for Parallel Recursive Programs 163

If IT : PowerList.X.n — Bool is a predicate, the induction principle is:

(Vz:z e X IL[z])
AN(Vp,q,n : p,q € PowerList XmAn €N : ILpAllg=1IL(p | q))
vV (Vp,q,n:p,q € PowerList XmAneN : Il.pATlg=1L(pt q)))
=
(Vp,n : p € PowerList. X.n An € N:ILp)

Functions are defined using pattern matching, and their properties are proved
based on the structural induction principle. For example, the high order function
map, which applies a scalar function to each element of a PowerList is defined as

follows:
map : (X — Z) x PowerList.X.n — PowerList.Z.n

map.f.[a] = [f.a] (4)
map.f.(p | q¢) = map.f.p|map.f.q

An induction principle is also defined for ParLists. But, in this case, a proving
has three stages: the base case, the odd inductive step and the even inductive step.
The rule of structural decomposition for ParList is as follows: when the number of
the elements is even, then tie or zip operators are used, and when this number is odd,
then cons or snoc are used. This way, the decomposition is unique.

The ParList function definition must contain definitions corresponding to these
three stages.

For example, the function reduce is defined as follows:

reduce : (®) x ParList. X.n —Y
is defined by:
reduce. @ .[a] = la]

reduce. ® .(p|q) = reduce.®.p ® reduce.  .q (5)
reduce. ® .(a<dq) a @ reduce. ® .q.

where the first argument is a binary associative operator on X type. The equivalent
definition that uses f§ instead of | can be used, too.

As for the previous data structures an induction principle is defined for P Lists,
too [9]. Functions over PList are defined using two arguments. The first argument is
a list of arities: PosList, and the second is the PList argument. (PosList is the type
of general linear lists List that contain only positive numbers — List.N*. The empty
linear list is denoted by [], and we have the operators cons and snoc defined on these
lists.) Functions over PList are only defined for certain pairs of these input values;
to express the valid pairs the specification of the function has to define the following
predicate:

defined : ((PosList x PList) — X) x PosList x PList — Bool

to characterize where the function is defined.



164 V. Niculescu

We illustrate this, by defining the function sum. This function computes the sum
of all elements of a PList over a type where operator + is defined:

defined.sum.l.p = prod.l =length.p
sum.[].[a] = a
sum.(x<l).Jli:i €T :pi] = (+i:1€T:sum.l.(p.i))

where prod.l computes the product of the elements of the list [, length.p is the length
of p.

For PowerArrays we have an induction principle, that includes a proof on each
dimension. For example, any associative operator can be extended on Power Arrays;
in the bidimensional case, the extended operator has the following type:

©® : PowerArray.X.m.n x PowerArray.X.m.n — PowerArray.X.m.n

and is defined, based on the structural induction principle, by:

[a] ® [b]
(plog) © (ulov)
(rhq) © (ul1v)

[a ® ]
(pOw) lo (¢Ov)
(pou) 1 (o).

The ® operator can be also defined with fj constructor operator, or using f on one
dimension and | on the other.

There is a strong similarity between a formal specification and a functional pro-
gram, which can be considered as a composition of operators that modify the universe
of the solving problem. Therefore, in order to create a PARES program for a certain
specification we may start from an initial expression (derived from specification), and
then to refine it based on equationally equivalent transformations. These transforma-
tions could be seen as a software development methodology.

Example 1 (Prefix sum). Given a list of scalars and an associative binary
operator @ on these scalars, the prefix sum returns a list of the same length where
each element is the result of applying the operator on the elements up to and including
the element in that position in the original list. We can assume that the operator &
has an identity element 0.

For computing the prefix sum of a list of numbers, different programs can be
defined.

The operator * on PowerLists shifts the elements of the list one position to the
right and adds a zero in the leftmost position (the rightmost element is lost by this
operation).

The prefix sum of a list [, PS.l can be specified as the unique solution to the
following equation (in z) [12]:

z:z2=2"®l (6)

A well known algorithm for computing the prefix sum is due to Ladner and Fischer
[11]. In the PowerList notation it can be written as:

LF.(ptg) = (LF.(p©q))" ®ph LF.(p®q) (7)



PARES — A Model for Parallel Recursive Programs 165

A proof by structural induction of the correctness of LF is presented by J. Misra
in [12].

Example 2 (Fast Fourier Transform). Discrete Fourier Transform is an im-
portant tool used in many scientific applications. By this transformation, the polyno-
mial representation with coefficients (a;,0 < i < n) is changed to another. The new
representation consists of a set of values, which are the polynomial values in the nth
order unity roots (w;,0 < j < n). The number of coefficients — n — leads to three
cases.

A scalar function will be used in all the cases. The function root : N — C applied
to n returns the principal nth order unity root :

2mi
rootn=en . (8)

The case n = 2F
PowerList data structures can be used, in this case, for the parallel program specifi-
cation. A formula that computes the polynomial value in w; is:
211 2mijl omij 211 2mijl
fw; = Z agp x €2kt e 2F Z agi+1 ¥e21 . 0<j5<n (9)
1=0 1=0

We use an additional function powers : Com x PowerList.C.n — PowerList.C.n
that returns a Power List of the same length as p, containing the powers of = from 0
up to the length of p. It is defined by:

‘]

powers.z.|a [ (10)
powers.w.(plt q) = powers.x®pl < xx > .(powers.z?.q))
where < z* > means the function that multiplies each list element with z (it is a
specialization of map function).

The definition of fft can be formally obtained starting from the expression:

fft.p = vp.p.(powers.z.p) (11)

where the function vp computes the values of a polynomial (given by the list of its
coefficients) in more points given by the second list argument:

vp . PowerList.X.n x PowerList.X.m — PowerList.X.m

vp.la].[w] = [a] (12)
vp.p.(ulv) = vp.p.ujvp.p.v

vp.(p#q)-w = vp.pw? ® (w @ (vp.q.w?))

The complete derivation for fft can be found in [12]. We present here just a
shorter version in order to emphasize the software development methodology for this
kind of programs.

The derivation starts from the idea that we have to find an equivalent expression
of the function, which has to be more efficient — with a smaller time-complexity.



166 V. Niculescu

We denote W.z.p = powers.z.p, and we have two properties that are based on the
properties of the nth order unity root z:

W?2.2.(phq) = W.22.p|W.22 q

W.z.(phg) = W.z.p| — Wz.q (13)

Base Case:
frt.[a]
= {definition of fft}
vp.[a].z
= {definition of vp}

[a]

Inductive Step:

fft.(pag)
= {definition of fft}
op-(phg)-(W-z.(pq))
= {definition of vp}
vp.p.(Wz.(pha))? + (W.z.(phq)) - (vp-q-(W.z.(pha))?)
= {property of W}
vp.p.(W.22.p|W.22.q) + W.2.(pliq) - vp.p.(W.22.p|W.22.q)
= { definition of vp}
vp.p.(W.2%.p)|vp.q.(W.2%.q) + (W.2.(plig)) - (vp.p.(W.2%.p)|vp.q.(W.2%.q))
= {definition of fft}
frtplfft.g+ (Wz.(phg)) - (fft-plfft.q)
= {property of W}
frtplfft.g+ (Wzpl = Wz.q)) - (fftplf ft.q)
= {definition of the operator -}
freplffta+ (Wap- fftp)|(=W.z.p) - fft.q)
= { operators definition }
(fftp+Weap- ffto|(fftp—Wzp- fftq)

So, the function fft : PowerList.C.n — PowerList.C.n can be defined as:

fft.[a] = [a]
fft.pbhq) = (r+uxs)| (r—uxs) (14)

where

= fftp

= fftq

powers.z.p

= root. (length.(p b q))

woe w3
|

The case n prime
In this case, it is necessary to compute directly the polynomial values:

fft: ParList.C.n — ParList.C.n

fft.p = vp.p.(powers.z.p) (15)



PARES — A Model for Parallel Recursive Programs 167

The function powers : Com x ParList.C.n — ParList.C.n is an extension of the
one presented in the first case, defined on Power List:

powers.z.[a) = [29]
powers.z.(pltq) = powers.z®pl < xzx > .(powers.x?.q)) (16)
powers.x.(a < q) = [2°] < <z > .(powers.z.q)).

The case n =ry *--- %71}
If n is not a power of two, but is a product of two numbers r; and 75, the formula
from the first case can be generalized in this way:

rizl (el 2mijt | 2mijk .
faw; = Z Z Qtry+k€ 2 e n , 0<j<n. (17)

k=0 t=0

The inner sum represents the value at w; mod r,, of the polynomial with the degree
equal to ro—1 and the coefficients {ax, agiry, - - ,ak+r1(r2,1)}. This value is computed
by FET for this polynomial. So, a recursive algorithm, that combines ;1 FFT, can
be used. Recursively, this can be generalized for a product of type n = ry * - - * 7.

Theorem 1. The best factorization n = r1 xro for FET (from the complexity
point of view) is to choose r1 from the prime factors of n.

A proof of this theorem is given in [20].
Therefore, for the specification of the parallel algorithm, we consider the decom-
position in prime factors n = ry % --- x ri. The PList data structures will be used.

fft: PosList x PList.C.n — PList.C.n (18)

The PosList is formed by the prime factors of n : [rq, 79, ..., 7%].
In this case, we have a new expression for f ft, based on PList structural induction
principle, and the proof can be found in [13]:

defined.f ft.l.p = (prod.l = length.p)
frtlllbi:i €z :[ad)]=[|j:7 €T : (+i:i €T : aixz")], 2 =root.x (19)
fft(xal)gi:iexT pi|=[j:j€T: (+i:9 €T :rix*uij)|, where

ri = fftl(p.i)

w.i.j =< 2% % > powers.(2%).1
z = root.n

n = length.[fi : i € T : p.i]

Remarks:

— For the base case it can be used the algorithm presented when n is prime,

freallbici € [ad]] = fft|parpise-[30: 1 € T : [a.]] (20)

which is more efficient.



168 V. Niculescu

— If the list of arities contains just values equal to 2, the algorithm becomes that
specified in the first case.

— The algorithm for Fast Fourier Transformation can be done simultaneously with
the decomposition of n in prime factors. If the prime factors become too large,
then we can stop and apply the algorithm used when n is prime.

4. Variable scale of granularity: Distributions

The ideal method to implement parallel programs described with Power Lists is
to consider that any application of the operators tie or zip as deconstructors, leads
to two new processes running in parallel, or, at least, to assume that for each element
of the list there is a corresponding process. This means that the number of processes
grows linearly with the size of the data. In this ideal situation, the time-complexity
is usually logarithmic (if the combination step complexity is a constant), depending
on loglen of the input list.

A more practical approach is to consider a bounded number of processes n,. In
this case we have to transform de input list, such that no more than n, processes are
created. This transformation of the input list corresponds to a data distribution.

4.1. PowerList Distributions

We consider PowerList data structures with elements of a certain type X, and
with length such that loglen = n. The number of processes is assumed to be limited
ton, =2P (p <mn).

Two types of distributions — linear and cyclic, which are well-known distributions,
may be considered. These correspond in our case to the operators tie and zip. Distri-
butions are defined as PowerList functions, so definitions corresponding to the base
case and to the inductive step have to be specified:

— linear

distrl.p.(ulv) = distr!.(p—1).u|distrl.(p—1).v, if loglen.(u|v) > pAp >0
distr!.0.0 = [l
distr!.p.x = [z], if loglen.z < p.

(21)

— cyclic
distre.p.(ufv) = distr¢.(p—1).ul distre.(p—1).v, if loglen.(ufjv) > pAp >0
distre.0.0 = [I]

distre.p.x = [x], if loglen.x < p.
(22)

The base cases transform a list [ into a singleton, which has the list [ as its unique
element.



PARES — A Model for Parallel Recursive Programs 169

Example 3. If we consider the list [ = [1 23 4 5 6 7 8], the lists obtained after
the application of the distribution functions distr!.2.l and distrc.2.l are:

distr! 2.1 = distr!.1.[1 2 3 4] | distr'.1.[56 78] = [[12] [3 4] [56] [7 8]]
distre.2.0 = distre.1.[135 7] § distr.1.246 8] = [[15] [26] [37] [48]]

Function Transformation. We have proved in the paper [15] that the functions
defined on Power Lists, could be transformed to accept distributions. The transfor-
mation is based on the following theorem.

Theorem 2. Given

— a function f defined on PowerList.X.n as
F-(ulo) = & (u, ), (23)

where ® is an operator defined based on scalar functions and extended operators
on PowerLists.
— a corresponding distribution distr'.p, (p < n), and

— a function fP — the bounded parallel function defined as

7. (ulv) = @7 (u, v)

SR =10 (24)
ffu=fu
then the following equality is true
f = flaty o fPodist'.p (25)

A similar theorem is proven for cyclic distributions, too.

4.2. ParList Distributions

For Par List functions we may also define distributions, but they are non-homogen-
eous. A distribution is considered to be w-balanced, if the difference between the
maximum number of elements assigned to a process and the minimum number of
elements assigned to a process is less or equal to w; a distribution is called homogenous,
if w =1, and perfect, if w = 0. In the PowerList case, the distributions are perfect
[15]. One way of defining distributions over ParList.X.n is to consider a distribution
function with the first argument equal to p;, which is the number of applications of
the operators (> or <, and | or f); the second argument is the list. To define these
distributions, we need two auxiliary operators: <, <.

—: X xParList.(ParList.X).n

x < 1= (z<firstl)<rest.l (26)



170 V. Niculescu

where first extracts the first element of a list, and the result of the function rest is
the list without the first element. In fact, < concatenates the first argument to the
first sublist of a list of sublists, which is the second argument.
The operator < is similarly defined.

Distributions over ParLists may be defined based on a pair of operators (>, |),
(<, ]),(>,8),0r (<,), depending on the function definition. For example, a linear dis-
tribution is defined as:

distr! : NxParList. X.n —ParList.(ParList. X ).p
distrl.ps.(x <) = x < distr!.(p;—1).1

distr! .py.(uv) = distr'.(p,—1).u|distr!.(pt—1).v
distrt.0.1 = [l

(27)

The first argument p; is computed as p; = Peven + Podd, Where Peyen is the number
of applications of the operator tie or zip, and p,qq is the number of applications of
the operator < or > (the method of computing peyen and poqq can be found in [17]).

Example.

If we consider the list I =[123 456 7 8 9], and we have 4 = 22 = 2P processors,
we need to apply a distribution with p; =3 =241 = p + pogq. The number p,uq
is obtained by counting the bits equal to 1, on positions less or equal than p in the
binary representation of n, which is the length of the list /. The binary representation
of n is for this example n = (1001),.

distrt.3.1 = [1] < distr'.2.23456 7 8 9

distr! 223456 78 9] = distr'.1.[2 3 4 5]|distr!.1.[6 78 9] = [[2 3] [4 5] [6 7] [8 9]]
=

distr!.3.1 = [[123][45][67][89]

Function Transformation. The transformation of a function on ParList in order
to accept distributions is similar to Power List function transformation. But, in this
case, we have some restrictions for functions that could be transformed, due to the
fact that the application of the operator > (or <) is postponed until the sequential
computation starts. That means that the initial order of operators’ application is not
preserved. So, in order to transform a ParList function for bounded parallelism a
commutativity property of that function has to be proved.

Definition 1. We say that a ParList function f satisfies the commutativity
property iff
flat® o fP.([a] «@) = flat* o fP(a — W) (28)
We call this property — commutativity — because it implies that the order in which
the deconstruction operators tie and cons are applied, does not change the result.
Simple examples of functions that satisfy the commutativity property are: map
and reduce.

Theorem 3. For a ParList function f and a corresponding distribution distr.p;
(defined based on the same operators), if the function satisfies the commutativity prop-
erty, then

flat* o fP.(distr.ps.u) = fu (29)



PARES — A Model for Parallel Recursive Programs 171

The function f? is the bounded parallel function, and flat* is defined based on the
same operators as those used for the distribution[17].

There is a constraint imposed by the commutativity property, but still there is
a large class of functions that satisfy this constraint. In BMF (Bird-Meertens For-
malism) of lists [2, 3, 18, 5] the analysis is done only for homomorphisms, which are
functions on lists that can be expressed as a composition of a reduce function (with
a certain associative operator) and a map function. Bounded parallelism is discussed
there too, but only for concatenation operator (so linear distribution or block).The
functions map and reduce satisfy the commutativity property, so all combinations of
them satisfy it as well.

4.3. PList Distributions

Distributions on PList data structures can be defined in a similar way to the
PowerList case. The difference is that we have also the argument that contains a list
with arities — [. The first argument of the distribution function — p — could have values
in the range [0..length.l]. The distribution function splits the list [ into two parts:
the first part defines the shape of resulted list and the second part defines the shape
of each sublist element of the resulted list. Because these lists of arities are needed in
the computations of the resulted lists, we will define distributions using pairs formed
each one by a list of arities and a PList. We consider these pairs as forming a new
type Pair : PosListxPList— Type. For this type, we have the following two axioms
that express the relation with operators | and g:

<L[i:ien:<[a,u; >]>=<Iva,[ji:i € :u)>

<Lg:ien:<[a,u; >] >=<Iva,fi:i€mn:u)>
Based on these, the definition of the distribution is:

distr! : N x Pair.PosList.PList— Pair.PosList.PList

distrl.p. <1y, < liu >>=< 1y, distrl.p. < l,u >>

<y, distrlp. < (a<l),[|i:i €a:u] >>= (30)
<ly,[li:i€a:<]al,distrlp—1. < lu; >>] >, if p>0

<ly,distrt.0.lu >=< 1y, [< l,u >] >

Initially the list I3 is equal to the empty list [].

The cyclic distribution is defined similarly by replacing operator tie with operator zip.
The number of resulted sublist is equal to n, = prod.p.l, prod.p.(a <l1) = a *

prod.p — 1.l1;prod.0.l = 1.

Example 5.

distr.2. <[|,<[232,[12345678910 11 12] >>=
<[, distrc.2. <[232],[123456 7891011 12]>>=
<[l (< [2,distre.1. < [32],[1357911] >> §



172 V. Niculescu

< [2],distre.1. < [32],[24 6 810 12] >>) >=

<[, (< [2],(< [3],distrc.0. < [2],[1 7] >> b < [3],distrc.0. < [2],[3 9] >>
B < [3],distre.0. < [2],[511] >>) > 4

(< 2], (< [3],distre.0. < [2],[2 8] >> b < [3],distre.0. < [2],[4 10] >>

B < [3],distre.0. < [2],[6 12] >>) >) >=

<[ (<23, ([< 2,17 >4 [< 2, B9]>] 1 [<[2],[511] >] >) §

(< 23], (< [2],[2 8] >] g [< [2), [4 10] >] § [< [2],[6 12] >]) >) >=

<23, [[< 2,17 >] [<[2],[2 8] >] [< [2],[3 9] >]

[<[2),[4 10] >] [< [2], [5 1] >] [< [2],[6 12] >]] >

Function Transformation. Asin PowerList case the functions are transformed
for bounded parallelism using distribution. The difference is that the number of di-
vision parts is different for different steps. In order to emphasize this kind of trans-
formation, we will present an application — Numerical Integration with Rectangle
Formula.

Example 6 (Numerical Integration with Rectangle Formula). For a func-

tion f : [a,b] — R, the integral T = f; f.xdx can be approximated using the rectangle
formula as:

2m
Qpi-f = 3Q, o f B fa,

i=1
where h = ;—ka, m=23""1k=1,2,... and the z; form a division on interval [a, b]
with n = 3* points:
h 3k — h
[®oy. oy Tpo1] = ao,a0+3—k,...,ao+ T h|, where ag :a+§.

It can be noticed that 3*~! points are used for computation of (Qp, ,.f) and
2x3*~1 points intervene in computation of the second term of the sum which computes

(Qp,-f)-
We will define a PList function rect that computes (Qp,.f), for a fix k:
rect : Real x PosList x PList.Real.n — Real
defined by:
defined.rect.l.p

rect.[).[x]
rect.hy.(3<1).[1i : i € 3 : p.i]

prod.l = length.p =n
hk * T
trect.(3hy).l.(p.1) + by * sum.(2>1).(p.0 & p.2),

where the arguments are:

—a
——— is the division step,

b
— the first hy = 5

— the second is a list formed by k values equal to 3, and



PARES — A Model for Parallel Recursive Programs 173

— the third is the PList that contains the function values.

The function sum was defined in Section 3.
For bounded parallelism the parallel function rect? is defined as:

rect .hy.(3<l).[gi:i €3 :ui] =
rect? hy.[].[< I, [v] >]

trect? . (3hy).lul + hy * sum?.(2>1).(u.0 § u.2)
[rect.hy.l.v]

The parallel function rect? is applied to < [], distrc.k.l.p >=<l,u >, where p is the
initial PList, and [ is the initial arities list.

4.4. PowerArray Distributions

This kind of distributions corresponds to Cartesian distributions [14], and they
are defined by Cartesian products of one-dimensional distributions. This means that
rows and columns are distributed independently.

Starting from this idea, distribution functions are defined on bidimensional Power
Arrays. The operators tie or zip may be used, on each dimension. Depending on the
possible combinations we arrive to 4 types of data-distributions: linear-linear, linear-
cyclic, cyclic-linear, cyclic-cyclic.

We consider the case of linear-cyclic distribution.

distr'®.po.p1.(ulov) = distr'.(py — 1).p1.u |o distr'®.(pg — 1).p1.v,

if logleng.(u|ov) > po Apo >0

distr'®.po.p1.(ufiv) = distr'®.po.(p1 — 1).u by distr'®.po.(py — 1).v, (31)
if logleny.(uliv) > p1 Ap1 >0

distr'c.0.0.1 = [I]

distr'®.po.p1.l = [l], if logleng.l < po A logleny.l < p;

If we apply this distribution to a structure PowerArray.X.ng.ny with ng > po,
and ny > pi, then the size of the data structures that are elements in the resulted
structure is equal to 2("0—P0) x 2(M1—=P1) We call these distributions on PowerArray,
Cartesian distributions.

Remark. For multidimensional structures we may use PowerArrays or equiva-
lent Power Lists with depths larger than 1. Cartesian distributions could be defined
on Power Arrays, but not on their equivalent Power Lists. This is another advantage
of using Power Arrays functions for multidimensional structures.

Function Transformation.

Theorem 4. For a PowerArray.X.ng.ny function f, and a corresponding dis-
tribution distr.pg.p1, the function fP, the bounded parallel function, has the following
property:

f = flat o fP. o distr.py.p1 (32)

where, the function fP is the bounded parallel functions, and flat has to be defined
based on the same operators as the function f.



174 V. Niculescu

The proof contains a demonstration for each dimension, which are similar to that
of Theorem of PowerList functions transformations.

Remark. Applying a distribution generates a change in the order of operators’
application. For any PowerArray function, in order to assure the correct definition
of it, it is necessary to prove first that the result of the function is independent of
the order of operators applications [12]. From this, we have also the fact that the
function result is not affected (the value is not changed) by the distribution.

5. Cost Measures: Time-complexity

There must be a mechanism for determining the costs of a program early in the
development cycle, and in a way that does not depend critically on the target ar-
chitecture. Such cost measures are the only way to decide, during development, the
merits of using one algorithm rather than another.

We will evaluate for our programs time-complexities base on given processor-
complexities.

Execution model. In this model a function specifies a parallel program, and
in the ideal case when the number of processors is at least equal to the number
of applications of the function on singletons (usually equal to the number of the
list elements) this program can be computed completely in parallel; the order of the
time-complexity being equal to the height of the tree associated to the divide&conquer
computation. When we introduce a distribution, we specify that parallel execution
is combined with sequential execution, so the resulted time-complexity is obtain as a
sum of the time-complexity associated to the parallel execution and time-complexity
of the sequential part: each processor will sequentially execute some computation,
and then they work together in a parallel program of divide&conquer type.

PowerList. Considering a function defined on Power List, and a distribution distr.p.-,
the time-complexity of the resulted program is the sum of the parallel execution time
and the sequential execution time:

T=0+T(")+T(f) (33)

where © reflects the costs specific to parallel processing (communication or access to
shared memory).

The evaluation considers that the processor-complexity is 2P (O(2P) processors are
used).

Example 7 (Constant-time combination step). If the time-complexity of
the combination step is a constant Ts(®) = K., K. € R, and considering the time-
complexity of computing the function on singletons is equal to K, (K € R also a
constant), then we may evaluate the total complexity as being:

T =0+ Kepa+ K (2"7P —1) + K, 2" (34)

If p = n we achieve the cost of the ideal case (unbounded number of processors).



PARES — A Model for Parallel Recursive Programs 175

For example, for reduction red(®) the time-complexity of the combination step is
a constant, and K = 0; so we have

Treqa = 0+ Kg(pa +277P — 1) (35)

For extended operators ® the combination constant is equal to 0, but we have
the time needed for the operator execution on scalars reflected in the constant Kj.
A similar situation is also for the high order function map. In these cases the time-
complexity is equal to

T=0+K:2"" (36)

ParList. Since, the ParList functions are transformed into PowerList functions
the time-complexity of the parallel computation is computed as it was analyzed for
Power List case. The time-complexity for sequential computation is based on ParList
functions and depends on the maximal length of the sublists. We have the same
general formula of time-complexity computation, but the functions f* are ParList
functions, which are going to be computed sequentially. The time-complexity of the
sequential part of the computation is evaluated as being the maximum of the time-
complexities of each computation of the function f*® corresponding to each sublist.

The list with maximum length in the distributed list is either the first (if > is used)
or the last (if < is used). So, for the first case, the time-complexity formula is

T=0+T(fP)+T(f°.(first.distr.p.u)) (37)

The transformation of the ParList programs into Power List programs is impor-
tant because in this way sequential execution required by the operators cons or snoc
is not interleaved any more with parallel execution, being postponed until the final
stage.

PList. In order to evaluate the time-complexity of a program specified based on
PList structures we use a similar approach to that used in the case of PowerList
programs.

Example 8 (Constant-time combination step). If we have PList functions
defined on lists of type PosList with identical elements equal to a and correspond-
ing PLists, and the evaluation considers that the processor-complexity is a? (O(aP)
processors are used) then we have the following evaluation:

1
T = 0 —+ KCpOé —+ KC(CLnip — l)ﬁ + Ksanfp (38)

Example 9 (FFT). The time complexity of the FFT algorithm defined based on
PList, depends on the prime factors of n and by their number k. If we consider that
all the prime factors are less than a number M then the time complexity is O(k),
with a constant that depends on M. If, for example, n = 3¥ then T.n = O(logs n).
In the sequential case the time complexity is T¢.n = n(a1(p1 — 1) + - + ax(pr — 1))
if n = p{* ... pp* [20].



176 V. Niculescu

PowerArray. The time-complexity associated to a PowerArray function is com-
puted, as in the PowerList case, from the sum of the time-complexity associated to
parallel execution T'(fP), and that for sequential execution T'(f®). T'(fP) could be
computed as a sum composed by terms that represents time-complexities correspond-
ing to computations on each dimension.

Remark. If the total number of processors is fixed and equal to 2P, then the
analysis of time-complexity may lead to the most appropriate decomposition p =

Po + P1-

Set-Distributions. By using set-distribution, a data element is distributed to
more than one process [14].

— One possibility to introduce set-distributions on these special types of data structures
is to increase the dimension of the data structure by replication, and then apply
a distribution on the obtained list.

— Another possibility to introduce set-distributions is to apply first a distribution, and
then use a replication for the distributed data structure.

For PowerLists, a simple 2P times replication on the second dimension, (p > 0),
is defined by:
rep1.p.X =rep1.(p—1).X |1 rep1.(p—1).X (39)
rep1.0.X =X

Replication could be also combined with different permutation functions. For
example, replication with right rotation is defined by the following function:

repRi : N x PowerArray.T.n.0 — PowerArray.T.n.p
repR1.p.X = repRy.(p — 1).(X|1arr.2"7P.X)
repR,.0.X =X

arr : N x PowerArray.T.ng.n1 — PowerArray.T.ng.ny (40)
arr.(2k).(XtoY) = arr.k. Xtoarr.k.Y

arr.(2k + 1).(XtoY) = arr.(k + 1).Yhoarr.k. X

arr.k.(X1Y) = arrk. X1 arrkY

arr.k.[a] = [d]

Distribution Costs. Data-distribution implies some specific costs which depends
on the maximum number of distinct elements (6;) which are assigned to a processing
element. We denote this cost by T}, and its complexity order depends on 6.

In PowerList case, this cost is equal to the length of the sublists created after the
execution of the distribution function distr.p. If the input list has 2™ elements and
we apply the distribution function with the first argument equal to p,p < n, then the
distribution cost has the complexity order equal to O(2"~P).

In the set-distribution case, where data replication is used, this kind of costs
depends on more parameters. If we use a simple replication on a new dimension, and
then apply a Cartesian distribution, Ty is not influenced by the distribution on the



PARES — A Model for Parallel Recursive Programs 177

new dimension. But, if a more complicated replication is used, T; depends on the
particular replication function.

Example 10 (Lagrange Interpolation). The evaluation of the Lagrange poly-
nomial in a given point x is an example of application where the set-distributions
could be successfully used. The input lists are: X = [zq,...,Zmy—1] distinct points;
F = [f.xo,..., fxm—1] function values. We will not present the entire derivation of
the program, but only the parts that emphasize the importance of choosing the right
distribution. (More details could be found in [16].) We have:

lagrange. X.F.x = reduce(+).(L.X.x x F)
LXx=U1Xz/U2.X
Ul.X.zx =< reduce(*).(<z—> .X) /| > .(<z—>.X)

Function U2 computes the list of products formed by (x; — xq) ... (x; — x;—1)(2; —
Zit1) - (Ti — Ty—1), for any ¢ : 0 < i < m. Since in these calculations an element
appears in computations more than once, the use of data replication is appropriate.

First, we consider a replication that is combined with a rotation function repR;.n.X
(Equation 40). In this way, each column contains different elements, which means that
each column contains the elements of list X in a different order.

U2.X =UA.(repRy.n.X)

UA.A = reduce; (x).(dif.(first.A).A)
dif.(zloy).(X|oY) = dif.x. X |o dify.Y
difx(X[1Y) = difx.X | difxY
il ={ §7v BeTy

1, otherwise

The function U A is the most costing one, and we will refer to it in more detail.
Distribution: We define and use a Cartesian distribution distr'.pg.p1, where po, p1 <
n and pg+p1 = p- This means that 2P0 %« 2P1 = 2P processors are available for working
in parallel. The distribution distr.pg.p; has to be linear-linear, since the function is
defined based on |p and |; operators. In order to accept the distribution, the function
U A is transformed:

U2.X = UAP (distr'!.pg.p1.(repRy.n.X))
UAP.A = reducel (x).(difP.(first.A).A)

Time-complexity is O((p1 * 2" 7P0)a + 22"7P) but the distribution costs have to
be analyzed, as well. Each processor contains a matrix with 2(?~?0)+("=P1) clements,
but not all of them are distinct. In order to reduce the cost of data distribution,
the number of distinct elements on each processor has to be as small as possible;
the minimum is equal to 2"/2P0. We have 04(distr'!.pg.p;.A) = min{2",2"Po +
2m~P1 — 1}, But, this cost is very high, so we have to change the replication method.
We can start from a distribution (one-dimensional distr.pg.X) of the list X, then to
replicate this distributed list based on repR;.pg.-, and then to use replication based
on repRi.(n — po).- for each resulted sublist. After we apply the function flat we



178 V. Niculescu

obtain a matrix B that has the property that each column is a different permutation
of the list X, and we may apply the same function U A to compute the products u.z;.

If we apply a Cartesian distribution distr!.p;.py, each resulted submatrix will
have only 2"~ Po distinct elements, if p; > pg, and 2" 7P0 x 2P0~P1 distinct elements if
p1 < po- The analysis of the time-complexity and the distribution cost leads to the
conclusion that the best decomposition of p is p = pg + p1 = 2pg, po = p1, provided
that p is even.

6. Efficient implementation

Mappings on hypercubes have been analyzed by J. Misra [12] and J. Kornerup
[9] for the programs specified based on Power List notations; they are based on Gray
code. Each fundamental operator on PowerLists can be efficiently implemented on
a hypercube. The technique encodes the PowerLists with a reflected Gray code,
and this encoding can be viewed as a domain transformation. Algebraically, it is
an isomorphism between the algebra of PowerLists and the algebra of Gray coded
PowerLists.

The analysis assumes that the hypercube has a number of nodes at least equal to
the number of lists’ elements which are mapped onto, and this could be an unrealistic
assumption. But, since we have proved that the functions over these structures can
be easily transformed using distributions this problem is solved.

Also, K. Achatz and W. Schulte have presented in [1], a methodology for de-
riving explicit programs for massively data parallelism from specifications based on
PowerLists. They present a set of semantic preserving transformation rules, which
make the implicit data parallelism in a divide&conquer scheme over Power Lists ex-
plicit, by introducing topology independent communication operations on Power Lists.

Functions over ParLists are transformed using distributions into functions over
Power Lists, and so, the mappings used for Power Lists can be used, too.

Example 11 (FFT). We can implement the algorithm of FFT defined in Section
3, based on PList data structures, using a recursive interconnection network [10],
which have the same arity list of the nodes like the arity list used for the calculation
of fft. The implementation has two stages: a descendent stage and an ascendant
stage.

J. Kornerup showed in [10] that the recursive network is isomorphic with butterfly
and iterative networks, and thus networks can also be used.

7. Parallel Programming Paradigms

Obviously, the presented model is very appropriate for shapely programs based on
divide&conquer paradigm, but not only. The division partition is controlled in order
to obtain a good work-balance, and this is done in formalized way (based on defined
algebras). Division could be done in two equal parts (PowerList, PowerArray),
different number of equal parts (PList, PArray), or almost equal parts (ParList,



PARES — A Model for Parallel Recursive Programs 179

ParArray). Still, other paradigms, such as direct parallelization (“embarrassingly
parallel computations”, SPMD, ParFor) could also be expressed in this model. PList
data structure together with the algebra defined on it allows different kind of compu-
tations. For example, a computation of “parFor” type (n tasks executed in parallel)
is defined using a PList function with a list of arities formed of only one element [n].

In order to allow sequential computation to be also expressed in this model, we
may combine classical functional programming with the model described before. This
means that we have programs expressed as a composition of functions, and these func-
tions could be defined on structures of PARES types based on structural induction
principles, or they could be functions defined on simple lists (based only on the op-
erators cons and snoc, and their correctness being proved based on simple induction
principles).

The parallel programming paradigm SEQ-PAR defines programs as a composition
of parallel functions. So, the sequentiality is given by the sequence of functions, and
so it is possible in this way to impose an order between computations, too.

Data-Pipeline computation could also be described. A pipeline consists of a list
of stages, where each stage applies a different function to the results obtained in the
previous stage. We can use a PARES function: distributed map, with two arguments:
a list of functions and a list of data-inputs, which applies a different function to each
data-input. Together with some kinds of shifting functions we can obtain a pipeline
type program:

init_pipe : List. X x List.X — List. X
init_pipe.(uta).(l>b) =

init_pipe.u.(dmap. f.(a <l)))
ingt_pipe.[].l =1

pipe : List. X x List. X x List.X — List.X
pipe.(p>a).(I>b).q = pipe.p.(dmap.f.(a<l)).(b<q)
pipe.[].(I1>b).q = pipe.[].(dmap.f.(0f <1)).(b<q)
pipe[].[].a =q

(p=input-data, g=output-data)

(0¢ is a value that will be finally ignored)

The function dmap could be defined as a Power List function, or more general as
a PList function:

dmap : PowerList.F.n x PowerList.X.n —
PowerList.X.n

dmap.(f | g)-(p | q) = dmap.f.p | dmap.g.q
dmap.f.[a] = [f.q]

dmap : PosList x PList.F.n x PList.X.n — PList.X.n
dmap.(n<l).Jizien: filli:ien:p]=

[i:i€m:dmap.l.fi.pi]
dmap.[).f.la] = [f.a]

where F' is the type of all functions f : X — X, and X is a general type.



180 V. Niculescu

A very simple example of direct parallelization is that used for solving a linear
system using Jacobi iterative method.

Example 12 (Linear System Solving — Jacobi Relaxation). The method
repeats iteratively a computation that has as a result an approximation of the solution,
and if this kind of computation is repeated enough time (until the difference between
two successive solutions is less than a pre-established error) we obtain a solution.
Each value X; can be computed independently (they depend only on the previous
approximation) and so the parallelization is very easy. A step executed by this method
is described by the JacoBiSTEP algorithm.

ALGORITHM JACOBISTEP< n, A[0..n—1][0..n—1], B[0..n—1], X[0..n—1]>
for i =0,n — 1 in parallel do
summli] < 0;
for j«<0,n—1 do
if (i # j) then
summli] < summl[i] + A[i][j] * X [j];
end if
end for
summli] < (B[i] — summl][i])/A[d][7];
X[i] + summlil;
end for

The description of this computation in the presented model is as follows:

JacobiStep : PosListxPList.(ParList.R.n).nxParList.R.nxParList.R.n
—ParList.R.n

defined.JacobiStep.l.A.B. X =1 = [n]
JacobiStep.[n]AX.B=[i:ien: (B— f.Ali].B.X.3) /A[i]]

{ — and / are extended operators }
fV.B.X.i = reduce(+).prod.V.X .(naturals.n).i

prod. . . 4 =prod.V1.X1.N1.i % prodV2.X2.N2.i
d.(V1|V2).(X1]X2).(N1|N2).i d.V1.X1.N1.4 d.V2.X2.N2.i
/ / "o vVx T < prod.V,.X/.N'.i7 ifi£#m

d. V . X . N d = ’ ’ 7
prod.(vaV').(za X ) (maN )i { 0 < prodV X' .N'i, ifti=m
. Jouxzx, ifi#Em
prod.v.x.m.i —{ 0, Fi—m

_J repl.5 | rep.l.3, if nis even
rep.ln = { larepln —1, if n is odd

rep.l.1 =1

naturals.n = prefiz.(rep.[1].n),

The function naturals.n returns the first natural numbers less than n, and uses
the prefix sum function (Example 1). The function rep.l.n returns a list that contains
a list with n elements equal to [. Since the computation is dependent on the indices
values, and the PARES data structures do not accept directly referring a particular



PARES — A Model for Parallel Recursive Programs 181

element, then a list of indices were introduced as an argument. The solution is not
very elegant, but emphasizes the fact that the value-dependent computations could
be described, too.

8. Conclusions

We have considered the theories: PowerList, ParList, PList, PowerArray,
ParArray, PArray, together, in order to prove that they can form a good model
for parallel programming with a very high level of abstraction — PARES (Parallel
Recursive Structures). Based on the fact that an effective model has to fulfill the
following requirements — abstractness, software development methodology, architec-
ture independence, cost measures, no preferred scale of granularity, efficiently im-
plementable — we have analyzed these requirements for this model. The conclusion
is positive, and this was also emphasized by the presented examples. The commu-
nication, synchronization and mapping of these programs are implicit, and so the
abstractness is very high and, they are architecture independent. The correctness
of the programs — very important in parallel programming setting — is proved based
on the algebras defined on these structures, and also based on structural inductions
principles. Data-distributions were introduces as functions, and they allow differ-
ent scale of granularity for the parallel programs defined on these structures. Cost
measures were defined, and they include analyses for different granularities, based
on data-distributions. Implementations could be done efficiently on hypercubes or
on recursively defined interconnection networks; implementation can be also based
on a set of semantic preserving transformation rules, which make the implicit data
parallelism in a divide&conquer scheme over PowerLists explicit.

The model could be framed as a recursive model for data-parallelism. Divide&
Conquer paradigm is naturally described, and the most important advantage is that
the division stage is formally controlled and leads from the beginning to a good work-
balance; data-distributions preserve this advantage because they were introduced as
functions over PARES structures, too. But also, as we have shown, other kinds of
parallel computations can be efficiently described and developed with this model.

References

[1] AcHATrz K., SCHULTE W., Massive parallelization of divide-and-conquer algorithms over
powerlists, Science of Computer Programming, 1996.

[2] BIRD R., Lectures on Constructive Functional Programming, in M. Broy editor, Con-
structive Methods in Computing Science, NATO ASI Series F: Computer and Systems
Sciences, Vol. 55, pp. 151-216. Springer-Verlag, 1988.

[3] CoLE M., Parallel Programming with List Homomorphisms, Parallel Processing Letters,
5(2):191-204, 1994.

[4] CoMAN G., Numerical Analysis, Editura Libris, 1995 (in Romanian).



182

(5]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

V. Niculescu

GORLATCH S., Abstraction and Performance in the Design of Parallel Programs,
CMPP’98 First International Workshop on Constructive Methods for Parallel Program-
ming, 1998.

JAay C.B., A semantics for shape, Science of Computer Programming, Vol. 25, No. 2,
December 1995, pp. 251-283(33).

Jay C.B., Costing Parallel Programs as a Function of Shapes, Science of Computer
Programming, Computer Programming, Vol. 37, No. 1, May 2000, pp. 207-224.

KORNERUP J., Mapping a functional notation for parallel programs onto hypercubes,
Information Processing Letters, Vol. 53, 1995.

KORNERUP J., Data Structures for Parallel Recursion, PhD Thesis, Univ. of Texas,
1997.

KORNERUP J., PLists: Taking PowerLists Beyond Base Two, in Proceedings of
CMPP’98 First International Workshop on Constructive Methods for Parallel Program-
mang, 1998.

LADNER R.E., FiscHER M. J., Parallel Prefix Computation, Journal of the ACM
(JACM) Vol. 27, Issue 4, pp. 831-838, 1980.

MisrA J., PowerList: A structure for parallel recursion, ACM Transactions on Pro-
gramming Languages and Systems, Vol. 16, No. 6, pp. 1737-1767, 1994.

NicuLEScU V., Parallel Algorithms for Fast Fourier Transformation using Power List,
ParList and PList Theories, Lecture Notes in Computer Science, Proceedings of In-
ternational Conference EuroPar’2002, Paderborn, Germany, August 2002, Springer-
Verlag, pp. 400-403.

NicuLeEscU V., On Data Distributions in the Construction of Parallel Programs, The
Journal of Supercomputing, Kluwer Academic Publishers, 29(1): 5-25, 2004.

NicuLeEscu V., Data Distributions in PowerList Theory. Lecture Notes of Computer
Science, Vol. 3722: Theoretical Aspects of Computing, Proceedings of ICTAC 2007,
Springer-Verlag, 2007: 396-409.

NicuLEscU V., GURAN A., Efficient Recursive Parallel Programs for Polynomial In-
terpolation, Post-proceedings of KEPT 2009, International Conference, Babes-Bolyai
University Press, pp. 265-274.

Ni1cULESCU V., GURAN A., Bounded Parallelism in PowerList and ParList Theories,
SYNASC 2009, Proceedings of the 11th International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing, Timigoara, 2009, IEEE Society Press, pp.
237-244.

SKILLIKORN D.B., Structuring data parallelism using categorical data types, in Program-
ming Models for Massively Parallel Computers, pp. 110-115, 1993, Computer Society
Press.

SKILLICORN D.B., TALIA D., Models and Languages for Parallel Computation. ACM
Computer surveys, 30(2): 123-136, June 1998.

WiLr H.S., Algorithms and Complezity, Mason & Prentice Hall, 1985.



