
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 15, Number 2, 2012, 79–90

Nominal Event Structures

Andrei ALEXANDRU, Gabriel CIOBANU

Romanian Academy, Institute of Computer Science, Iaşi
E-mail: aalexandru@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. We present the concept of “event structures” in the nominal

framework of the Fraenkel-Mostowski model of set theory. Using specific tech-

niques of nominal logic, we introduce and study the nominal event structures,

providing some properties. The analogy between the results obtained by us-

ing the Fraenkel-Mostowski axioms and those obtained by using the Zermelo-

Fraenkel axioms is discussed.

1. Introduction

The notion of fresh name often arises when manipulating syntactic expressions;
therefore it is necessary to indicate some constraints whenever describing such a syn-
tactic manipulation. Often it is just said that a name is fresh without specifying any
restrictions. In such a case, we mean that the fresh name must be different from any
name occurring anywhere else in the current expression or program. Some program-
ming systems have explicit mechanisms for renaming, for binding a name with a value,
and for managing sets of such bindings. Modern programming languages are designed
to manage bindings and fresh names by using the notions of scope, workspace and
environments. Since renaming, binding and fresh names appear in several approaches,
they deserve to be studied in their own terms.

Nominal logic and nominal semantics was presented by Gabbay and Pitts in [2, 3,
5]; they use the Fraenkel-Mostowski (FM) model of set theory. The FM permutation
model of set theory was devised in 1930s to prove the independence of the axiom of
choice from the other axioms of Zermelo-Fraenkel (ZF) model of set theory. The axiom
of choice says that given any collection of sets, each containing at least one object it
is possible to make a selection of exactly one object from each set, even though there
are an infinite amount of sets and no “rule” of how we choose objects [7]. As shown
by Gödel and Cohen, the axiom of choice is proved to be logically independent of the
other axioms of ZF set theory. The FM model is built using all the axioms of the

80 A. Alexandru, G. Ciobanu

Zermelo-Fraenkel with atoms (ZFA) model, except the axiom of choice. It has the
special property of finite support which claims that for each element x in an arbitrary
FM-set we can find a finite set supporting x (in the sense of Definition 2.4), and the
property that the set A of atoms is infinite. In fact, the finite support property says
that for each element x in an arbitrary FM-set, we can always find a fresh element
for x i.e. an element which is not in the support of x (see Corollary 2.1 for the formal
definition of support).

In λ-calculus, a general computation model in computer science, α-equivalence
classes of a λ-term x have the support of x represented by the free variables with
respect to x (Example 2.2). This means that Fraenkel-Mostowski model of set theory
could be a more suitable framework for computer science.

The aim of this paper is to define and study “elementary event structures”, “event
structures” and “causality function”in nominal framework of FM-sets. These concepts
were initially described using the classical ZF model of set theory [4]. Using nominal
techniques, we define “FM-elementary event structures”, “FM-event structures” and
“FM-causality function”, presenting also some properties of these new concepts. The
analogy between the results obtained by using the FM axioms of set theory and those
obtained by using the ZF axioms of set theory is emphasized by the results presented
in Section 3.

2. Fraenkel-Mostowski Sets

We present the Fraenkel-Mostowski model with atoms by using the notions of
transposition, permutation, and substitution. We start from the ZFA model. Let A
be an infinite set of atoms. A is characterized by the axiom “y ∈ x ⇒ x /∈ A” which
means that only non-atoms can have elements.

Definition 2.1.

i) A transposition is a function (a b) : A → A with the property (a b)(a) = b,
(a b)(b) = a and (a b)(n) = n for n ̸= a, b.

ii) A permutation of A is a bijection π from A to A.

iii) A substitution is a function {b|a} : A → A with the property {b|a}(n) = n if
n ̸= a and {b|a}(a) = b.

Let SA be the set of all finitary permutations of A (i.e. the set of all permutations
of A which leave unchanged all but finitely many atoms). SA is a group under the
usual composition of permutations. The composition of permutation is denoted by
“◦”. It can be proved that SA is the set of all bijections π : A → A generated
by composing finitely many transpositions. Indeed, let σ ∈ SA be a function which
permutes only a finite number of atoms {a1, ..., an} such that the atoms A\{a1, ..., an}
are left unchanged. Formally, we can say that σ is a permutation of the set {a1, ..., an},
and so σ can be expressed as a product of at most (n− 1) transpositions [6].

The underlying logic of ZFA is the usual first-order logic with equality; its signature
contains just a binary predicate set membership ∈ and a constant symbol A.

Nominal Event Structures 81

Definition 2.2. The following axioms give a complete characterization of the
Zermelo-Fraenkel with atoms model:

1. ∀x.(∃y.y ∈ x) ⇒ x /∈ A (only non-atoms can have elements)

2. ∀x, y.(x /∈ A and y /∈ A and ∀z.(z ∈ x ⇔ z ∈ y)) ⇒ x = y

(axiom of extensionality)

3. ∀x, y.∃z.z = {x, y} (axiom of pairing)

4. ∀x.∃y.y = {z | z ⊂ x} (axiom of powerset)

5. ∀x.∃y.y /∈ A and y = {z | ∃w.(z ∈ wandw ∈ x)} (axiom of union)

6. ∀x.∃y.(y /∈ A and y = {f(z) | z ∈ x}), for each functional formula f(z)

(axiom of replacement)

7. ∀x.∃y.(y /∈ A and y = {z | z ∈ x and p(z)}), for each formula p(z)

(axiom of separation)

8. (∀x.(∀y ∈ x.p(y)) ⇒ p(x)) ⇒ ∀x.p(x) (induction principle)

9. ∃x.(∅ ∈ x and (∀y.y ∈ x ⇒ y ∪ {y} ∈ x)) (axiom of infinite)

10. A is not finite.

Definition 2.3. Let X be a set defined by the axioms of ZFA model. An SA-
action on X is a function · : SA ×X → X having the properties that Id · x = x and
π · π′ · x = (π ◦ π′

) · x for all π, π′ ∈ SA and x ∈ X.
An SA-set is a pair (X, ·) where X is a set defined by ZFA model, and · : SA×X →

X is an SA-action on X. We simply use X if no confusion arises.

Definition 2.4. Let (X, ·) be an SA-set. We say that S ⊂ A supports x whenever
for each π ∈ Fix(S) we have π · x=x, where Fix(S)={π |π(a) = a,∀a ∈ S}.

When we can find a finite set supporting an element x in an SA-set, we say that
“x has the finite support property” or “x is finitely supported”.

Definition 2.5. Let (X, ·) be an SA-set. We say that X is an FM-set if for each
x ∈ X there exists a finite set Sx ⊂ A which supports x.

Theorem 2.1. Let X be an SA-set, and for each x ∈ X let us define Fx =
{S ⊂ A |S finite, S supports x}. If Fx is nonempty then it has a least element which
also supports x. We call this element the support of x, and we denote it by S(x) or
supp(x).

Proof. We define S(x)=∩{S ⊂ A |S finite, S supports x}= ∩
S∈Fx

S. We have to

prove that if S1 and S2 are both finite and supports x, then S1 ∩ S2 supports x.
Indeed, let π be a permutation from Fix(S1 ∩S2), and prove that π · x=x. Since any

82 A. Alexandru, G. Ciobanu

permutation π is generated by composing finitely many transpositions, it is enough
to prove the finite support property of x only for transpositions. This means that we
should prove that (a b) ·x=x for each a, b /∈ S1 ∩S2. The cases a, b /∈ S1 and a, b /∈ S2

are obvious because S1 and respectively S2 supports x, and by Definition 2.4 we have
(a b) · x=x. Now let a /∈ S1 and b /∈ S2. Since S1 ∪ S2 is finite and A is infinite,
we can find c ∈ A \ (S1 ∪ S2) and a ̸= c ̸= b. Since a, c /∈ S1 and S1 supports x it
follows that (c a) · x=x. Because b, c /∈ S2 and S2 supports x, we have (c b) · x=x. It
follows that (a b) ·x=(a b) · (c b) ·x=((a b) ◦ (c b)) ·x=((c b) ◦ (a c)) ·x=(c b) · (a c) ·x=x.
The case when a /∈ S2 and b /∈ S1 is similar. Let us suppose that Fx is nonempty.
This means there is at least a finite set supporting x; thus, the support S(x) is well
defined. Moreover, S(x) is minimal between the finite sets supporting x. �

Corollary 2.1. Let X be an FM-set, and for each x ∈ X we define Fx={S ⊂
A |S finite, S supports x}. Then Fx has a least element which also supports x. We
call this element the support of x, and denote it by S(x) or supp(x).

Example 2.1.

1. The set A of atoms is an SA-set with the SA-action · : SA × X → X defined
by π · a := π(a) for all π ∈ SA and a ∈ A. (A, ·) is an FM-set because for each
a ∈ A we have that {a} supports a. Moreover S(a) = {a} for each a ∈ A.

2. The set A of atoms is an SA-set with the SA-action · : SA ×X → X defined by
π · a=a for all π ∈ SA and a ∈ A. (A, ·) is an FM-set because for each a ∈ A we
have that ∅ supports a. Moreover, S(a)=∅ for each a ∈ A.

3. The set SA is an SA-set with the SA-action · : SA × SA → SA defined by
π · σ := π ◦ σ ◦ π−1 for all π, σ ∈ SA. (SA, ·) is an FM-set because for each
σ ∈ SA we have that the finite set {a ∈ A |σ(a) ̸= a} supports σ. Moreover
S(σ) = {a ∈ A |σ(a) ̸= a} for each σ ∈ SA.

4. Any ordinary ZF-set X (like N,Z,Q or R for example) is an SA-set with the
SA-action · : SA ×X → X defined by π · x := x for all π ∈ SA and x ∈ X. Also
X is an FM-set because for each x ∈ X we have that ∅ supports x. Moreover
S(x) = ∅ for each x ∈ X.

5. The ZFA universe (i.e. the class of all ZFA sets), denoted by ZFA(A), construct
under the usual von Neumann cumulative hierarchy [3] is an SA-set with the
SA-action · : SA × ZFA(A) → ZFA(A) defined inductively by π · a := π(a) for
all atoms a ∈ A and π · x := {π · y | y ∈ x}. The FM universe (i.e. the class
of all FM-sets), denoted by FM(A), construct under the usual von Neumann
cumulative hierarchy form an FM-set under the same action [3].

6. If (X, ·) is an SA-set then ℘(X) = {Y |Y ⊆ X} is also an SA-set with the
SA-action ⋆ : SA × ℘(X) → ℘(X) defined by π ⋆ Y := {π · y | y ∈ Y } for all
permutations π of A, and all subsets Y of X. When no confusion arises we
denote ⋆ also by · . Note that ℘(X) does not necessarily be an FM-set, even
if X is an FM-set. For example A is an FM-set, but ℘(A) is not an FM-set

Nominal Event Structures 83

because the subsets of A which are in the same time infinite and coinfinite have
not the finite support property. For each FM-set (X, ·) we denote by ℘fs(X) the
set formed from those subsets of X which are finitely supported according to
the action ⋆ . (℘fs(X), ⋆|℘fs(X)) is an FM-set, where ⋆|℘fs(X) : SA ×℘fs(X) →
℘fs(X) is defined by π ⋆ |℘fs(X)Y=π ⋆ Y for all π ∈ SA and Y ∈ ℘fs(X);
the codomain of the action ⋆|℘fs(X) (which is in fact the action ⋆ restricted to
℘fs(X)) is indeed included in ℘fs(X) because of Proposition 2.1.

7. Let (X, ·) and (Y, ⋄) be SA-sets. As in the classical ZF theory we define the
cartesian product X × Y as the set of ordered pair (x, y) = {{x}, {x, y}} for
x ∈ X and y ∈ Y . X×Y is also an SA-set with the SA-action ⋆ : SA×(X×Y) →
(X×Y) defined by π ⋆ (x, y) = (π ·x, π ⋄ y) for all π ∈ SA and all x ∈ X, y ∈ Y .
If (X, ·) and (Y, ⋄) are FM-sets then (X × Y, ⋆) is also an FM-set.

Using the remarks presented in item 6 of Example 2.1, we can define the notion
of finitely supported subset of a certain FM-set.

Definition 2.6. Let (X, ·) be an FM-set. A subset Z of X is called finitely
supported if and only if there exists a finite set S ⊆ A such that S supports Z with
respect the SA-action ⋆ : SA × ℘(X) → ℘(X) defined by π ⋆ Y={π · y | y ∈ Y } for all
permutations π of A and all subsets Y of X. Whenever S supports Z with respect
the SA-action ⋆, we say that S supports Z.

Remark 2.1. Let (X, ·) be an FM-set. A subset Z of X is called finitely supported
in the sense of Definition 2.6 if and only if Z ∈ ℘fs(X).

Proposition 2.1. Let (X, ·) be an SA-set and let π ∈ SA be an arbitrary permu-
tation. Then for each x ∈ X which is finitely supported, we have that π · x is finitely
supported and

S(π · x) = π(S(x)).

Proof. Let π ∈ SA be an arbitrary permutation and x ∈ X a finitely supported
element. First we show that π(S(x)) supports π · x. Let σ ∈ Fix(π(S(x))). This
means that σ(π(a)) = π(a) for all a ∈ S(x). Also π−1(σ(π(a))) = π−1(π(a)) = a,
for all a ∈ S(x). Thus we get π−1 ◦ σ ◦ π ∈ Fix(S(x)). Now S(x) always supports
x (by Corollary 2.1). According to Definition 2.4, we have (π−1 ◦ σ ◦ π) · x = x.
Since · is a group action, the last equality is equivalent with σ · (π · x) = π · x. Hence
whenever x ∈ X is finitely supported we have that π ·x is finitely supported. Moreover
S(π · x) ⊆ π(S(x)) for each x ∈ X which is finitely supported and each π ∈ SA. We
apply this for elements π−1 ∈ SA and π · x ∈ X (which we already know that is
finitely supported). We get S(π−1 · π · x) ⊆ π−1(S(π · x)). Composing with π in the
last relation, we obtain π(S(x)) ⊆ S(π · x). �

Definition 2.7. Let (X, ·) be an FM-set. An element x ∈ X is called equivariant
if it has an empty support, i.e. π · x = x for each π ∈ SA.

The following example (considered also in [3]) shows us how we can express the
λ-calculus in FM. Gabbay and Pitts used this example to argue once more why we

84 A. Alexandru, G. Ciobanu

can work in the FM approach instead of working in the classical ZF approach. Many
other reasons for which the FM model can be considered as a more suitable framework
for computer science can be found in [2],[3],[5].

Example 2.2.

1. If X ′ is the set of λ-terms t, then we inductively define an SA-action ⋆ of SA on
X ′ by:
• variable: π ⋆ a = π(a) whenever a is a variable (corresponding to atoms)
and π is a permutation of atoms;
• application: π ⋆ (tt′) = (π ⋆ t)(π ⋆ t′) for all λ-terms t and t′, and for all
π ∈ SA;
• abstraction: π ⋆ (λa.t) = λ(π(a)).(π ⋆ t) for all variables a, all λ-terms t,
and for all π ∈ SA.

It is easy to check that (X ′, ⋆) is an FM-set and the support of a λ-term t is
the finite set of atoms occurring in t (both free and binding occurrences).

2. Let X be the set of the α-equivalences classes of the λ-calculus terms t. We can
define an SA-action · of SA on X by: π · [t]α = [π ⋆ t]α for all λ-terms t and
for all π ∈ SA (where [t]αrepresents the α-equivalence class of the λ-term t).
If two λ-terms t and t′ are α-equivalent, it is clear that π ⋆ t = π ⋆ t′ and so
the action · is well defined. It is easy to check that (X, ·) is an FM-set; in
fact a set which is in a bijection with an inductively defined FM-set [3]. If t is
chosen to be a representative of its α-equivalence class then S(t) coincides with
fn(t), where fn(t) is the set of free variables of t defined by λ-calculus rules [3].
An α-equivalence class of terms does not contain bound names (in the sense of
the quotient of the equivalence class over them). We cannot define a function
bn : X → ℘fin(A) which would be able to extract exactly the bound names for
each FM element t [3]. α-equivalent terms are identified in the nominal logic
since two α-equivalent terms have the same set of free variables.

In the view of Example 2.1 we can define the notion of finitely supported functions.
Recall that a function f : X → Y is a particular relation; more precisely, a function
f : X → Y is a subset f of X × Y characterized by the property that for each x ∈ X
there is exactly one y ∈ Y such that (x, y) ∈ f . A function f between two FM-sets
X and Y is finitely supported if it is finitely supported as a subset of the cartesian
product X ×Y in the sense of Definition 2.6. If X and Y are FM-sets, then X ×Y is
an FM-set with the SA-action defined as in Example 2.1 (7). Then we can give the
following definition for finitely supported functions.

Definition 2.8. Let X and Y be FM-sets. A function f : X → Y is finitely
supported if f ∈ ℘fs(X × Y).

We denote by Y X the set {f ⊆ X × Y | f is a function from the underlying set of
X to the underlying set of Y }.

Proposition 2.2. Let (X, ·) and (Y, ⋄) be FM-sets. Then Y X is an SA-set with
the SA-action ⋆ : SA × Y X → Y X defined by

Nominal Event Structures 85

(π ⋆ f)(x) = π ⋄ (f(π−1 · x))
for all π ∈ SA, f ∈ Y X and x ∈ X.

A function f : X → Y is finitely supported in the sense of Definition 2.8 if and
only if it is finitely supported with respect the permutation action ⋆.

Proof. We already know that functions from X to Y are subsets of the cartesian
product X × Y which is an FM-set (Example 2.1 (7)). By Example 2.1 (6) we know
that ℘(X × Y) is an SA-set and π ⋆ f = {(π · x, π ⋄ y) | (x, y) ∈ f}. Hence π ⋆ f is a
function with the domain π ·X = X. Moreover (π⋆f)(π ·x) = π ⋄f(x). Let x′ = π ·x,
so x = π−1 · x′. We obtain (π ⋆ f)(x′) = π ⋄ (f(π−1 · x′)). The application x 7→ x′

is bijective, and it follows that (π ⋆ f)(x) = π ⋄ (f(π−1 · x)) for all π ∈ SA, f ∈ Y X

and x ∈ X. Since the action ⋆ of SA on Y X was defined as in Example 2.1 (6), it is
clear that each function f : X → Y is finitely supported with respect the permutation
action ⋆ if and only if f ∈ ℘fs(X × Y). �

Proposition 2.3. Let (X, ·) and (Y, ⋄) be FM-sets. A function f ∈ Y X is
equivariant with respect the SA-action ⋆ : SA × Y X → Y X defined by

(π ⋆ f)(x) = π ⋄ (f(π−1 · x)) for all π ∈ SA, f ∈ Y X and x ∈ X
if and only if for all π ∈ SA and x ∈ X we have f(π · x) = π ⋄ f(x).

Proof. Let us suppose that f is equivariant. This means π ⋆ f = f for all π ∈ SA.
Let π ∈ SA be an arbitrary permutation. From Proposition 2.2 we know that for each
x ∈ X we have (π ⋆f)(π ·x)=π ⋄ f(x). Since π ⋆f=f , it follows that f(π ·x)=π ⋄ f(x)
for all x ∈ X. Conversely, let us suppose that for all π ∈ SA and x ∈ X we have
f(π · x)=π ⋄ f(x). Let π ∈ SA be an arbitrary permutation. For each x ∈ X we have
(π ⋆ f)(x)=π ⋄ (f(π−1 · x))=f(π · (π−1 · x))=f(x). �

By now we denote the SA-actions only by “·” (if no confusion is possible).

3. Nominal Event Structures

We consider the event structures as they are formally presented in [4]. Namely,
an elementary event structure is a partial order (E,≤), where E is a set of events
and ≤ is a partial order over E which is considered as a causality relation. We adapt
the notions presented in [4] in an FM framework. The definitions and results in this
section are justified by the fact that in the FM framework only objects with finite
support are allowed.

Definition 3.1. An FM-elementary event structure E is an FM-set (E, ·) to-
gether with an equivariant partial order relation “≤” on E. An FM-elementary event
structure is denoted by (E,≤, ·) or simply by E.

A partial order relation “≤” on E is a subset of the cartesian product E × E;
this relation is reflexive, anti-symmetric and transitive. By Definition 2.7, “≤” is
equivariant if it is finitely supported as a subset of the cartesian product E×E in the
sense of Definition 2.6 and its support is empty. This means that “≤” is equivariant iff
for each pair (e, e′) ∈≤ and each π ∈ SA we have that π ·(e, e′) ∈≤ (where · represents
the action of SA on the cartesian product E ×E constructed as in Example 2.1 (7)).

86 A. Alexandru, G. Ciobanu

If we write “(e, e′) ∈≤” as “e ≤ e′ ”, the equivariance property of ≤ can be expressed
by

e ≤ e′ implies π · e ≤ π · e′, whenever π ∈ SA.

Definition 3.2. An FM-complete elementary event structure E is an FM-elemen-
tary event structure (E,≤, ·) such that every finitely-supported subset X ⊆ E has a
least upper bound with respect the order relation ≤.

Theorem 3.1. Let (E,≤, ·) be an FM-complete elementary event structure. Then
every finitely-supported subset X ⊆ E has a greatest lower bound with respect the order
relation ≤.

Proof. Let X be a finitely supported subset of E in the sense of Definition 2.6. Let
D = ∩{↓ x |x ∈ X}, where by ↓ x we denote the set {y ∈ E | y ≤ x}. Informally D is
the set of lower bounds of X with respect the order relation ≤. If X is empty, we take
D = E. First we show that D is finitely supported in the sense of Definition 2.6. If we
prove this, D will have a least upper bound (denoted by sup(D)) because of Definition
3.2. We know that X has a finite support S(X), and we show that S(X) supports D.
Let π be a permutation which fixes S(X) pointwise (i.e., π ∈ Fix(S(X))). Let d ∈ D
arbitrarily chosen; then d ≤ x for all x ∈ X. We claim that π · d ∈ D, which is the
same as saying that π · d is a lower bound of X. Indeed, let y ∈ X be an arbitrary
element of X. Since π ∈ Fix(S(X)) and S(X) supports X in the sense of Definition
2.6 (cf. Theorem 2.1), we get π ⋆X = X (where the action ⋆ of SA on ℘(E) is defined
as in Example 2.1 (6)). This means that for our y ∈ X there is an x ∈ X such that
π · x = y. However d ≤ x; because ≤ is equivariant, we also have π · d ≤ π · x = y.
Hence π · d ∈ D. Because d is arbitrary from D, we can say that π ⋆ D ⊆ D
whenever π ∈ Fix(S(X)) (⋆). We have two methods of proving that π ⋆ D = D
(for π ∈ Fix(S(X))). First we remark that π ∈ Fix(S(X)) iff π−1 ∈ Fix(S(X)).
According to (⋆), we get π−1 ⋆D ⊆ D which means π ⋆ (π−1 ⋆D) ⊆ π ⋆D (the action
⋆ of SA on ℘(E) is defined as in Example 2.1 (6)), and D ⊆ π ⋆ D.
Another method of showing that π ⋆ D = D is to use a proof by contradiction. Let
us suppose that there is π ∈ Fix(S(X)) such that π ⋆ D (D. By induction, we get
πn ⋆ D (D for all n ≥ 1. However π is a finitary permutation, and so there is k ∈ N
such that πk = Id. We obtain D (D, a contradiction. It follows that π ⋆ D = D
whenever π ∈ Fix(S(X)), and hence S(X) supports D according to Definition 2.4.
Since S(X) is finite, we have that sup(D) exists.

We show now that sup(D) is the greatest lower bound of X. If x ∈ X, then x is
an upper bound of D, and so sup(D) ≤ x. Since x was chosen arbitrarily from X,
we can have sup(D) ∈ D. Since sup(D) is maximal between the lower bounds of X
and it is a lower bound of X, then sup(D) = inf(X), where inf(X) represents the
greatest lower bound of X. �

Definition 3.3. Let (E,≤, ·) be an FM-elementary event structure. An FM-
causality function on E is a causality preserving, finitely-supported function from E
to E, i.e. a finitely supported function f : E → E with the property that: e ≤ e′

implies f(e) ≤ f(e′) for all e, e′ ∈ E.

Nominal Event Structures 87

We provide a fixed point (Tarski-like) theorem adapted to the FM approach which
states that whenever f is a causality function on an FM-complete elementary event
structure E, there is at least one event unchanged by f .

Theorem 3.2. Let (E,≤, ·) be an FM-complete elementary event structure and
f : E → E a causality function on E. Then there exists an event e ∈ E such that
f(e) = e. Moreover, e can be chosen such that any other event e′ which is invariant
at the application of f (i.e., f(e′) = e′) causes e (i.e., e′ ≤ e).

Proof. Let D = {d ∈ E | d ≤ f(d)}. First we prove that D is finitely-supported
in the sense of Definition 2.6. We know that f is a causality function and hence
it is finitely supported in the sense of Definition 2.8. We prove that S(f) supports
D in the sense of Definition 2.6. Let π ∈ Fix(S(f)), and d ∈ D be arbitrarily
chosen. Then d ≤ f(d), and because “≤” is equivariant we also have π · d ≤ π · f(d).
However, by Proposition 2.2, we have π ·f(d) = (π⋆̃f)(π ·d), where ⋆̃ is the SA-action
⋆̃ : SA × EE → EE defined by (π⋆̃f)(x) = π · (f(π−1 · x)) for all π ∈ SA, f ∈ EE

and x ∈ E. Also, by Proposition 2.2, we know that f is finitely supported according
to Definition 2.8 if and only if it is finitely supported according to the SA-action ⋆̃
described before. Since π ∈ Fix(S(f)) and S(f) supports f (by Theorem 2.1) we
have that π⋆̃f = f . It follows that π · d ≤ π · f(d) = (π⋆̃f)(π · d) = f(π · d) and hence
π ·d ∈ D. Since d was chosen arbitrarily from D, we have π⋆D ⊆ D (where the action
⋆ of SA on ℘(E) is defined as in Example 2.1 (6) whenever π ∈ Fix(S(f)) (†).

As in the last part of the proof of Theorem 3.1, we have two methods of proving
that π ⋆ D = D for π ∈ Fix(S(f)). First we remark that π ∈ Fix(S(f)) iff π−1 ∈
Fix(S(f)). Hence by (†) we get π−1 ⋆D ⊆ D which means that π ⋆ (π−1 ⋆D) ⊆ π ⋆D
(because of the definition of ⋆), and finally D ⊆ π ⋆ D.
Another method to prove that π ⋆ D = D is by contradiction. Let us suppose that
there is π ∈ Fix(S(f)) such that π ⋆D (D. By induction we get πn ⋆ D (D for all
n ≥ 1. However π is a finitary permutation, and so there is k ∈ N such that πk = Id.
We obtain D (D, a contradiction. It follows π ⋆ D = D whenever π ∈ Fix(S(f)),
and hence S(f) supports D according to Definition 2.4. Since S(f) is finite, we have
that sup(D) exists according to Definition 3.2.

Let e = sup(D). Then for each d ∈ D, we have d ≤ e. Since f preserves the
causality relation, we have f(d) ≤ f(e). Because d ∈ D, it follows d ≤ f(d) ≤ f(e).
Hence d ≤ f(e) for each d ∈ D. By the definition of a least upper bound, we have
that e ≤ f(e) which means that e ∈ D.
However, because f is causality preserving, we have f(x) ∈ D for each x ∈ D. Since
e ∈ D, it follows that f(e) ∈ D; thus f(e) ≤ e because e = sup(D).

Therefore we get f(e) = e. Whenever e′ is an event such that f(e′) = e′, it follows
that e′ ∈ D, and so e′ ≤ e. �

Theorem 3.3. Let (E,≤, ·) be an FM-complete elementary event structure and
f : E → E an equivariant causality function over E. Let P be the set of fixed points
of f . Then (P,≤, ·) is an FM-complete elementary event structure.

Proof. First we remark that P is non-empty because of Theorem 3.2. Since f is
equivariant, it follows that for all π ∈ SA and all x ∈ E we have f(π · x) = π · f(x).

88 A. Alexandru, G. Ciobanu

Whenever x is a fixed point of f , we have f(π · x) = π · f(x) = π · x and so π · x
is also a fixed point of f . We proved that the application ·|P (where ·|P represents
the restriction of the SA-action · to P) has the codomain equal to P . Hence the
application ·|P : SA ×P → P defined by π · |Px = π ·x for all π ∈ SA and all x ∈ P is
an SA-action of SA on P (it satisfies the axioms of a group action whenever · does).
Moreover, (P, ·|P) is an FM-set. The support of each element in P according to the
SA-action ·|P is the same with the support of that element according to the SA-action
· . It is somehow natural to denote the action ·|P with · .

Let X be an arbitrary finitely supported subset in P . We have to prove that X has
a least upper bound in P . We already know that X has a least upper bound (denoted
by sup(X)) in E because (E,≤, ·) is an FM-complete elementary event structure.

Let x ∈ X be an arbitrary element. We have that x ≤ sup(X) and then
f(x) ≤ f(sup(X)). However X contains only fixed points of f and hence f(x)=x and
x ≤ f(sup(X)). By the definition of a least upper bound it follows that sup(X) ≤
f(sup(X)). Now, let y ≥ sup(X). Because f is a causality function, we also have
f(y) ≥ f(sup(X)). We have already proved that sup(X) ≤ f(sup(X)), and hence
f(y) ≥ sup(X). We get that f(y) ≥ sup(X) whenever y ≥ sup(X).

Let D = {d ∈ E | f(d) ≤ d and sup(X) ≤ d}. We claim that S(sup(X)) sup-
ports D in the sense of Definition 2.6, and so D is a finitely supported set. Indeed,
S(sup(X)) exists according to Corollary 2.1 because E is an FM-set and sup(X) ∈ E.
Let π ∈ Fix(S(sup(X))), and d ∈ D be arbitrarily chosen. Then f(d) ≤ d. Be-
cause “≤” is equivariant, we also have π · f(d) ≤ π · d. However, by Proposition
2.2, we have π · f(d) = (π⋆̃f)(π · d), where ⋆̃ is the SA-action ⋆̃ : SA × EE → EE

defined by (π⋆̃f)(x) = π · (f(π−1 · x)) for all π ∈ SA, f ∈ EE and x ∈ E. By
the same Proposition 2.2, we know that f is finitely supported according to Defini-
tion 2.8 if and only if it is finitely supported according to the SA-action ⋆̃ described
before. Since f is equivariant, we have that σ⋆̃f = f for each σ ∈ SA. It fol-
lows that f(π · d) = (π⋆̃f)(π · d) = π · f(d) ≤ π · d. Since d ∈ D, we also have
sup(X) ≤ d. Therefore π · sup(X) ≤ π · d. However π · sup(X) = sup(X) because
π ∈ Fix(S(sup(X))). Finally we obtain sup(X) ≤ π ·d and hence π⋆D ⊆ D whenever
π ∈ Fix(S(sup(X))) (the action ⋆ of SA on ℘(E) is defined as in Example 2.1 (6)).
Since π ∈ Fix(S(sup(X))) iff π−1 ∈ Fix(S(sup(X))), it follows that π−1 ⋆ D ⊆ D,
from which π⋆(π−1⋆D) ⊆ π⋆D (because of the definition of ⋆) and finally D ⊆ π⋆D.
Thus D is finitely supported, and there exists the greatest lower bound of D denoted
by inf(D) (Theorem 3.1).

Let e = inf(D). Then for each d ∈ D, we have e ≤ d. Since f preserves the
causality relation, we have also f(e) ≤ f(d). Because d ∈ D, it follows f(e) ≤
f(d) ≤ d. Hence f(e) ≤ d for each d ∈ D. According to the definition of a greatest
lower bound, we have that f(e) ≤ e. Also, d ≥ sup(X) for each d ∈ D implies
inf(D) ≥ sup(X) which means e ∈ D. However, because f is causality preserving
and because f(y) ≥ sup(X) whenever y ≥ sup(X), we have that f(x) ∈ D for each
x ∈ D. Since e ∈ D, it follows that f(e) ∈ D and so e ≤ f(e) because e = inf(D).

We proved that e is a fixed point of f such that sup(X) ≤ e. Hence e ∈ P is an
upper bound for X. It remains to prove that e is the least upper bound for X in
the system (P,≤). Let e′ ∈ P be another upper bound for X. Then sup(X) ≤ e′

Nominal Event Structures 89

(since sup(X) is the least upper bound for X in E and, clearly, e′ is an upper bound
for X in E); it follows that e′ ∈ D. Since e = inf(D), we get e ≤ e′. This means
e = sup(X) is in (P,≤). �

Remark 3.1. In Theorem 3.3 we have required that f should be equivariant
because we need P to be an FM-set. If f is not equivariant, then it would be possible
to find a fixed point x of f such that π · x would not be again a fixed point of f (for
a certain π ∈ SA), and so the codomain of the function ·|P would not be P . Thus we
could not prove in the FM approach a complete similar Tarski-like theorem ([8]): “Let
(E,≤, ·) be an FM-complete elementary event structure and f : E → E a causality
function on E. Let P be the set of fixed points of f . Then (P,≤, ·) is an FM-complete
elementary event structure” . Only the equivariance of such a f ensures the existence
of an FM-structure on P in the sense of Definition 2.5.

Various relations could be defined over the set E of events. In [4] it is introduced
a conflict relation on E, denoted by #. An event structure is defined in [4] as a triple
(E,≤,#) where (E,≤) is an elementary event structure, and # is a symmetrical and
irreflexive relation on E (called the conflict relation) which satisfies: ∀e1, e2, e3 ∈ E :
e1 ≥ e2#e3 ⇒ e1#e3.

We can adapt this notion to FM framework, adding that both the set of events
and the relations must have the finite support property.

Definition 3.4. An FM-event structure E is an FM-set (E, ·) together with an
equivariant partial order relation ”≤” on E, and with an equivariant symmetrical and
irreflexive relation “#” on E such that:

• (E,≤, ·) is an FM-elementary event structure.

• the relation # satisfies: ∀e1, e2, e3 ∈ E : e1 ≥ e2#e3 ⇒ e1#e3.

Such an FM-event structure is denoted by (E,≤,#, ·) or simply by E.

Some authors define the elementary event structures as event structures where no
elements are in conflict; so the notion of elementary event structures is introduced
after the notion of event structure was defined. This definition of elementary event
structures is actually the same as the one defined in [4]. There are different ways
of presenting the notion of event structure. The other definitions of event structures
can also be formalized in FM in the same way we have presented in this paper, with
the mention that in the FM framework we allow only finitely supported objects. Our
aim was not to provide a complete study of event structures nor to present several
approaches. Our goal was only to prove that a known concept (in this case event
structures) often used in computer science, initially introduced by using the Zermelo-
Fraenkel axioms of set theory, can also be formalized in the FM framework. We also
provide some nominal properties of the new event structures, and prove that some
ZF properties of it are preserved in a nominal approach.

The techniques presented here can be extended to other concepts. Several concepts
like multisets, generalized multisets, various algebraic structures, etc can be formalized
in FM setting in a similar way. The nominal techniques presented in this paper have

90 A. Alexandru, G. Ciobanu

already been used in [1], where the authors have provided a nominal semantics of
some subcalculi of the π-calculus.

References

[1] Alexandru A., Ciobanu G., Nominal semantics of the πI-calculus, Proceedings of
the 13th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC 2011), IEEE Computer Society Press, pp. 331–339, 2012.

[2] Gabbay M. J., Gabbay M., Substitution for Fraenkel-Mostowski Foundations, Proceed-
ings AISB Symposium on Computing and Philosophy, pp. 65–72, 2008.

[3] Gabbay M. J., Pitts A. M., A New Approach to Abstract Syntax with Variable Binding,
Formal Aspects of Computing, Vol. 13, pp. 341–363, 2001.

[4] Nielsen M., Plotkin G., Winskel G., Petri Nets, Event Structures and Domains,
Theoretical Computer Science, Vol. 13, pp. 85–l08, 1981.

[5] Pitts A., Alpha-Structural Recursion and Induction, Journal of the ACM 53, pp. 459–
506, 2006.

[6] Rose J. S., A Course on Group Theory, Dover Publications, 1994.

[7] Rubin H., Rubin J. E., Equivalents of the Axiom of Choice, II., Studies in Logic, North-
Holland, 1985.

[8] Tarski A., A Lattice-Theoretical Fixpoint Theorem and its Applications, Pacific J. Math.,
Vol. 5, pp. 285–309, 1955.

