
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 15, Number 2, 2012, 106–128

Dynamic Selection of Enumeration
Strategies for Solving Constraint

Satisfaction Problems

Broderick CRAWFORD1, Carlos CASTRO2, Eric MONFROY3,
Ricardo SOTO1,4, Wenceslao PALMA1, Fernando PAREDES5

1 Pontificia Universidad Católica de Valparáıso, Chile
2 Universidad Técnica Federico Santa Maŕıa, Chile

3 CNRS, LINA, Université de Nantes, France
4 Universidad Autónoma de Chile, Chile

5 Escuela de Ingenieŕıa Industrial,
Universidad Diego Portales, Santiago, Chile

Abstract. The main goal concerning Constraint Satisfaction Problems is

to determine a value assignment for variables satisfying a set of constraints, or

otherwise, to conclude that such an assignment does not exist (the set of con-

straints is unsatisfiable). In the Constraint Programming resolution process, it

is known that the order in which the variables are assigned have a significant

impact in terms of computational cost. In this paper we propose a new frame-

work for guiding the classical Constraint Programming resolution process. Such

a framework is able to measure the resolution process, using some indicators,

in order to perform on-the-fly replacements of variable/value ordering heuristics

exhibiting poor performances. The replacement is performed depending on a

quality rank, which is computed by means of a choice function-based Hyper-

heuristic, where its parameters are fine-tuned by a Genetic Algorithm which

trains the choice function carrying out a sampling phase. The experimental re-

sults show the effectiveness of our approach where our combination of strategies

outperforms the use of individual strategies.

1. Introduction

Constraint Programming (CP) is a powerful software technology devoted to the
efficient resolution of constraint-based problems. It smartly interbreeds ideas from

Dynamic Selection of Enumeration Strategies for Solving CSP 107

different domains such as Operations Research, Artificial Intelligence, Graph Theory
and Programming Languages. Currently, CP is largely used in different application
domains, for instance, in computer graphics, to express geometric coherence, in nat-
ural language processing for the construction of efficient parsers, in database systems
to ensure and/or restore data consistency, in electrical engineering to locate faults,
and even for sequencing the DNA in molecular biology. The principle behind CP is
simple: The user states the problem and the system solves it.

In CP, the selection of an enumeration strategy is crucial for the performance of
the resolution process, where a correct selection can dramatically reduce the compu-
tational cost of finding a solution. However, it is well-known that deciding a priori the
correct heuristic is quite difficult, as the effects of the strategy can be unpredictable.
In recent years, different efforts have been done to determine good strategies based
on the information generated through the resolution process. However, deciding what
information must be measured and how to redirect the search is an ongoing research
direction.

The enumeration strategies are constituted by variable and value selection heuris-
tics. The idea behind the variable selection heuristic is to select the suitable variable
identifying bad situations as rapidly as possible. On the other hand, the goal pursued
by the value selection heuristic consists of selecting the value that has more probabil-
ity of corresponding to a solution. A variable or value selection can be either static,
where the selection is fixed and determined prior to search, or dynamic, where the se-
lection criteria is determined as the search progresses. Given a Constraint Satisfaction
Problem (CSP) and a tree-based backtracking search algorithm, a variable or value
selection is said to be optimal if the selection results in a search that visits the fewest
number of nodes over all possible selections when finding one solution or showing that
there does not exist a solution. Finding optimal selections is a computationally diffi-
cult task. In [13] the author shows that simply deciding whether a variable is the first
variable in an optimal variable selection is at least as hard as deciding whether the
CSP has a solution. Finding an optimal value selection is also clearly at least as hard
since, if a solution exists, an optimal value selection could be used to efficiently find a
solution. Thus, such a pair of decisions is crucial in the performance of the resolution
process, where a correct selection can dramatically reduce the computational cost of
finding a solution. For a simple CSP problem, a good enumeration strategy goes
directly to a solution performing a few enumerations without backtracking. However,
a bad strategy can perform a lot of backtracks before reaching a solution. Obviously
strategies have drastically different efficiencies, often several orders of magnitude, and
thus it is crucial to select a good one that unfortunately cannot be predicted in the
general case.

There exist various studies about enumeration strategies [7, 2], some centered
in defining general criteria, e.g., the smallest domain for variable selection, and its
minimum, maximum, or a random value for value selection. As opposed to this idea,
some research works have proposed strategies for a given class of problems, e.g., for
job shop scheduling [18], as well as for configuration design [8]. We can also find
research focused on determining the best strategy based in some criterion [19], i.e.,
the selection heuristic is determined only once before starting the resolution process,

108 B. Crawford et al.

remaining unchangeable during the whole process. However, deciding a priori the
correct heuristics is quite hard, as the effects of the strategy can be unpredictable. In
recent years, multiple efforts have been done to determine good strategies based on
the information generated through the resolution process.

Considering the aforementioned concerns, we are interested in making good choices
for enumeration, i.e., selection of a variable and a value. However, unlike previous
research works we focus our research in reacting on the fly, allowing an early replace-
ment of bad-performance strategies without waiting the entire solution process or an
exhaustive analysis of a given class of problems. We introduce techniques allowing
the identification and measurement of indicators for the resolution process. The main
goal is to make possible the classification of the execution process state, considered as
the resolution progress, and in that way be able to determine if the current strategy
exhibits a poor performance and whether it is necessary to replace it with a better
one. Such evaluation procedure is not carried out for improving the resolution of
a single problem. We address our approach to efficiently find solutions for different
problems. This can be done by exploiting search process features to dynamically
adapt a CP solver changing the enumeration strategy in use when an other strategy
looks more promising in order to solve the CSP at hand. Regarding this issue, we use
Autonomous Search (AS) principles [11] where a system should be able to change its
internal components when exposed to changing external forces and opportunities, in
order to obtain better results. More precisely, we use a hyperheuristic approach that
operates at a higher level of abstraction than the CSP solver. The hyperheuristic has
no problem-specific knowledge. It manages a portfolio of enumeration strategies. At
any given time the hyperheuristic must choose which enumeration strategy to call. In
our approach a choice function adaptively ranks the enumeration strategies and the
problem of determining the best set of parameters of the choice function is tackled
using a Genetic Algorithm (GA). The contributions of this paper are the following:

• We propose a new algorithm that tackles a critical limitation of common strate-
gies: they remain in use during the whole resolution process with no reaction
against a poor search performance. Our algorithm is able to detect inefficiencies
and, as a result, replace the enumeration strategy with a better one.

• We perform an indicator-based observation during the solving process. The
main purpose of indicators is to proportion the relevant information about the
behavior of the resolution process. They must reflect the real state of progress in
the problem resolution. In this way, we are able to elaborate a correct judgment
about the search performance. To this end, we define simple and quantitative
indicators, which can be used different times as well as percentage combinations
of them depending on the used search techniques and/or the problem to solve.

• Using AS principles we propose a hyperheuristic approach to decide which enu-
meration strategy to apply at each decision step during the search. To allow the
hyperheuristic to operate, we define a choice function which adaptively ranks
the enumeration strategies.

The rest of this paper is organized as follows. In Section 2 we present our approach
to meet the challenge of dynamic selecting enumeration strategies for solving CSPs.
Section 3 presents the benchmark problems and the experiments settings. We then

Dynamic Selection of Enumeration Strategies for Solving CSP 109

present the experiments and the analysis of results. Finally, in Section 4 we conclude
and highlight future directions of research.

2. Dynamic Selection of Enumeration Strategies
using an Hyperheuristic Approach

The research community in constraint solving is fruitful in heuristics to solve CSPs,
but the efficiency of a heuristic may vary dramatically depending on the problem at
hand. A combination of heuristics seems to be a reasonable approach, but that
combination must be established [17].

A CSP can be solved with a search algorithm that specifies heuristics for variable
and value selection using inference and backtracking methods. There are a broad
range of variable ordering and value ordering heuristics that try to improve the search.
However, no single heuristic is the best for all CSP classes [22]. This work therefore
seeks a combination of heuristics, betting that a good combination of heuristics can
outperform even the best individual heuristic.

Figure 1. Hyperheuristic framework based on a choice function.

On the one hand, an a priori decision concerning a good combination of enumera-
tion strategies (variable + value selection heuristics) is very difficult. Heuristics that
sample information before or during search in order to inform subsequent decisions
have shown better performance and greater robustness than fixed heuristics [5].

In this section we present a Hyperheuristic approach which decides which Enumer-
ation Strategy to apply at each decision step during the search. Then we present the
details of the proposal including the indicators used to measure the solving process,

110 B. Crawford et al.

a Choice Function that determines the performance of a given Enumeration Strategy
in a given amount of time through a set of indicators and control parameters, and the
data flow during the execution of the Hyperheuristic approach proposed. Finally we
present a GA used to tune the parameters of the choice function. From the point of
view of software architecture, our approach is supported by the architecture proposed
in [16] and developed in [10].

2.1. The Hyperheuristic Approach

Hyperheuristic systems employ one of two approaches in deciding on which con-
structive heuristic to apply next. The first either identifies or adapts an existing
heuristic to be applied at each stage of the construction process, while the second
approach optimises a search space of heuristic combinations, i.e., list of low-level
heuristics. The study presented in this work focuses on the second approach taken by
Hyperheuristic systems, i.e., the generation of combinations of low-level heuristics.

A hyperheuristic approach is a heuristic that operates at a higher level of abstrac-
tion than the CSP solver [6]. The hyperheuristic has no problem specific knowledge.
At any given time the hyperheuristic must choose which Enumeration Strategy to call.
To allow the Hyperheuristic to operate, we define a Choice Function which adaptively
ranks the Enumeration Strategies [9].

The Choice Function provides guidance to the Hyperheuristic by indicating which
Enumeration Strategy should be applied next based upon the information of the
search process (it should be captured through some indicators). The Choice Function
is defined as a weighted sum of indicators (a linear combination) expressing the recent
improvement produced by the Enumeration Strategy called.

2.1.1. Measuring the Solving Process: Indicators

The proposed adaptive model must possess the ability to change a strategy to
another according to the effect that these strategies have in the resolution process,
i.e., to change the strategy having a bad performance, assuming that other strategy
might work better. To measure the effect of a strategy in the resolution process
and make the decision of changing or not, it must be a process supported by the
observation of information generated during the resolution process.

An indicator provides information that will enable us to know the state of progress
in the solution process for a problem. Indicators can be divided into base indicators
and calculated indicators (from the base indicators), see Table 1 and 2 respectively.

2.1.2. Indicators for the Search-tree Process Cost

The cost measures allow us to decide when one strategy performs better than
another [3]. While the comparison with other techniques may be done once the reso-
lution of the problem has ended, some of these indicators could be used in intermediate
stages of the process to assess the performance of resolution process at a specific time.
Example of this kind of indicators are:

• Number of backtracks (Backtracks) [3, 4, 16, 19]: Counts the number of times

Dynamic Selection of Enumeration Strategies for Solving CSP 111

the resolution process goes back from a variable xj to its predecessor xi after
having proved that none of the extensions of xj can be extended to a solution.
In terms of the search tree, it counts the number of times the search goes up in
the tree from a node u to its predecessor after having exhausted the last child of
u. The condition for a node u to be counted as a backtrack node is that it has
some children which have been visited, and that none of them was successful.

• Number of nodes (Nodes) [3]: Counts the number of nodes visited.
• Runtime/CPU time [16, 4]: Measures the time required in solution process of a
problem.

Table 1. Base Indicators

Code Name
(Base In-
dicators)

Description Calculate Refe-
rences

Step Number of
Measure-
ments

Every time the choice function
is used

Step ++

TV Total Num-
ber of Vari-
ables

Total Number of Variables in
the Problem. It is an indica-
tor in relation with the charac-
teristic of the problem, rather
than the solving process. Its
value is constant during the
process

length(AllVars,N)

VU Variables
Unfixed

Number of Variables Unfixed var count(Rest, VU).
Conceptually corresponds
to length(Rest,N) - Vt1.
Where “Vt1” is the num-
ber of variables with
domain size equal to 1 in
the Variables Unfixed set.
Note that “Vt1” is equal
to VFPS (see Table 2).

SB Shallow
Backtracks

When we try to assign a value
to the current variable, the
constraint propagation process
is automatically triggered. If it
yields a failure, the next value
is tried.

[1]

SS Search
Space

Current Search Space
∏

(Domi)t [16]

SS pr Previous
Search
Space

Previous Search Space
∏

(Domi)t−1 [16]

B Backtracks If the Current Variable causes
a Dead-End (Propagation that
produces an Empty Domain)
then the Algorithm Backtracks
to the Previously Instantiated
Variable

Every Time you Try to
Perform a B. A counter is
set to increase by one

[3],
[12],
[14],
[4],
[16],
[19]

N Nodes Number of Nodes Visited A counter is set to increase
by one every time you visit
a node

[3]

112 B. Crawford et al.

Table 2. Calculated Indicators (to be continued on next page)

Code Name (Calcu-
lated Indicators)

Description Calculate Refe-
rences

VF Variables Fixed Number of Variables
Fixed by Enumeration
and Propagation

(TV − V U) [12, 7]

VFES Variables Fixed by
Enumeration in
each Step

Number of Variables
Fixed by Enumeration
in each Step. It makes
sense when the number
of steps is greater than
1

1 [16],
[7]

TAVFES Total Accumulated
of Variables Fixed
by Enumeration in
each Step

Number of Total Ac-
cumulated Variables
Fixed by Enumeration
in each Step

∑
(V FES) [16],

[7]

VFPS Variables Fixed
by Propagation in
each Step

Number of Variables
Fixed by Propagation
in each Step. Note that
VFPS is equal to “Vt1”
(see Table 1)

length(Rest,N)− V U [16]

TAVFPS Total Accumulated
of Variables Fixed
by Propagation in
each Step

Number of Total Ac-
cumulated Variables
Fixed by Propagation
in each Step

∑
(V FPS) [16]

TSB Total Shallow
Backtracks

Accumulated Number
of Shallow Backtracks

∑
(SB) [1]

d pr Previous Depth Previous Depth of the
current node in the
Search Tree

[16]

d Depth Current Depth of the
current node in the
Search Tree

[16],
[7]

dmax Maximum Depth Current Maximum
Depth Reached in the
Search Tree

dmax is d, if d ≥
dmax pr

[16]

dmax pr Previous Maxi-
mum Depth

Previous Maximum
Depth Reached in the
Search Tree

MAX(dmax)n−1 [16]

In1 Current Maximum
Depth - Previous
Maximum Depth

Represents a Varia-
tion of the Maximum
Depth.

(dmax− dmax pr) [16]

In2 Current Depth -
Previous Depth

Positive means, that
the Current Node is
Deeper than the one
Explored at the Previ-
ous Step.

(dt − dt−1) [16]

In3 Reduction Search
Space

If Positive, The Cur-
rent Search Space is
Smaller than the one at
Previous Snapshot.

(((SSt−1 −
SSt)/SSt−1) ∗ 100)

[16]

PVFES Percentage of
Variables Fixed by
Enumeration in
each Step

It makes sense when
the number of steps is
greater than 1

((V FES/TV) ∗ 100) [7]

Dynamic Selection of Enumeration Strategies for Solving CSP 113

Table 2. Calculated Indicators (continued from previous page)

Code Name (Calcu-
lated Indicators)

Description Calculate Refe-
rences

PTAVFES Percentage of Total
Accumulated of
Variables Fixed by
Enumeration in
each Step

((TAV FES/TV)∗100) [7]

PVFPS Percentage of
Variables Fixed
by Propagation in
each Step

((V FPS/TV) ∗ 100) [7]

PTAVFPS Percentage of
Total Number of
Variables Fixed
by Propagation in
each Step

((PTAV FPS/TV) ∗
100)

[7]

Thrash Thrashing The Solving Process al-
ternates Enumerations
and Backtracks on a
few Number of Vari-
ables without Succeed-
ing in having a Strong
Orientation.

(dt−1 − V FPSt−1) [7]

DB Depth Back If a backtrack is per-
formed. Count how
many levels backward
in the Depth

If D − dpr = 0, then
add 1. If D < dpr,
then increases in (dpr−
D)+1. In another case
maintain constant

[7]

2.1.3. Correlation Analysis

Collecting the indicators and using all of them in the choice function is a costly
task (it is a combinatorial problem in itself). We thus use correlation analysis to
detect indicators that are not useful because they behave as an other indicator. A
correlation analysis was performed to detect pairs or sets of highly related indicators,
and thus equivalent. We use the Pearson Correlation Coefficient, which is sensitive to
a linear relationship between two variables. It is obtained by dividing the Covariance
of two variables by the product of their Standard Deviations

ρX,Y = corr(X,Y) = COV (X,Y)/σXσY (1)

The Pearson Correlation is defined only if both of the standard deviations are fi-
nite and both of them are nonzero. The Correlation Coefficient is symmetric (then
corr(X,Y) = corr(Y,X)) and scale free. The Pearson Correlation is 1 in the case
of a perfect positive linear correlation, –1 in the case of a perfect negative linear re-
lationship (anticorrelation). Values between –1 and 1 indicate the degree of linear
dependence between the variables. When it is near to zero, there is less correla-
tion.The Correlation Matrix of n variables X1, ..., Xn is the n × n matrix whose i, j
entry is corr(Xi, Xj).

114 B. Crawford et al.

The criteria used to detect pairs of indicators highly related was an absolute value
of correlation coefficient at least of 0.9. We identified the indicators highly related
(see Tables 3a and 3b), then we will use only one of them (one per row) in our Choice
Functions. Thus, for example, we will use VF (the number of fixed variables) and
not d (the current depth in the search tree) since they are highly related, and thus
redundant.

Table 3a. Indicators highly related (group by row)

Positive Linear
Relationship

1 B N TAVFES TSB PTAVFES DB
2 VF d
3 VFPS PVFPS
4 d pr Thrash

Table 3b. Indicators highly related
(group by row)

Negative Linear
Relationship

1 VU VF
2 VU d

2.1.4. Choice Function

As previously mentioned, the CSP search phase is commonly tackled by building a
tree structure by interleaving enumeration and propagation phases. In the enumera-
tion phase, the branches of the tree are created by selecting variables and values from
their domains. In the propagation phase, a consistency level is enforced to prune the
tree in order to avoid useless tree inspections.

Procedure 1 (see Figure 2a) represents a general procedure for solving CSPs. The
goal is to recursively generate partial solutions, backtracking when an inconsistency is
detected, until a result is reached. The algorithm uses two data structures: inst and
D. The former holds the instantiations while the latter holds the set of domains. The
variable k represents the current level of the tree and success is a Boolean variable
to be set to true when a solution is found. The instantiate function is responsible for
building the partial solutions and assigning them into the inst array. The consistent
function decides whether the current instantiation can be extended to a full solution;
additionally, it sets success to true if the current instantiation is a solution. At the
end, restore reinitializes the domain of the k variable.

Let us notice that the value and variable selections are performed at line 2 and 10,
respectively. The propagate procedure is responsible for pruning the tree by enforcing
a consistency property on the constraints of the problem. The most used notion of
consistency is the arc-consistency [21].

Dynamic Selection of Enumeration Strategies for Solving CSP 115

Procedure 1 solve(k : integer, inst : array)

1: while D[k] ̸= {} and not success do
2: a← choose value from(D[k])
3: inst← instantiate(inst, k, a)
4: if consistent(inst, k, success) then
5: if success then
6: print solution(inst)
7: else
8: propagate(k,D, failure)
9: if not failure then

10: l← choose variable()
11: solve(l, inst)
12: end if
13: end if
14: end if
15: end while
16: restore(k);

(a) General solving procedure.

Procedure 2 solve(k : integer, inst : array)

1: while D[k] ̸= {} and not success do
2: a← choose value from2(D[k])
3: inst← instantiate(inst, k, a)
4: calculate indicators()
5: calculate choice functions()
6: choose promising enum strategy()
7: if consistent(inst, k, success) then
8: if success then
9: print solution(inst)

10: else
11: propagate(k,D, failure)
12: if not failure then
13: l← choose variable2()
14: solve(l, inst)
15: end if
16: end if
17: end if
18: end while
19: restore(k);

(b) General solving procedure including the choice function.

Figure 2. Procedures for solving CSPs.

As mentioned above, our hyperheuristic is based upon a choice function, which
adaptively ranks the enumeration strategies. The choice function value of each enu-
meration strategy is determined based on information with regards to performance

116 B. Crawford et al.

indicators. The choice function attempts to capture the correspondence between the
historical performance of each enumeration strategy and the decision point currently
being investigated. Here, a decision point or step is performed every time the solver
is invoked to fix a variable by enumeration.

The choice function is used to rank and choose between different enumeration
strategies at each step. For any enumeration strategy Sj , the choice function f in
step n for Sj is defined by Equation 2, where l is the number of indicators considered
and α is a parameter to control the relevance of the indicator within the choice
function.

fn(Sj) =

l∑
i=1

αifin(Sj) (2)

Additionally, to control the relevance of an indicator i for a strategy Sj in a
period of time, we use a popular statistical technique for producing smoothed time
series called exponential smoothing. The idea is to associate greater importance to
recent performance by exponentially decreasing weights to older observations. The
exponential smoothing is applied to the computation of fin(Sj), which is defined by
equations 3 and 4, where vi1 is the value of the indicator i for the strategy Sj in time
1, n is a given step of the process, β is the smoothing factor, and 0 < β < 1.

fi1(Sj) = vi1 (3)

fin(Sj) = vin + βifin−1(Sj) (4)

Then the exponentially smoothed moving average for step n is given by

fin(Sj) = vin + βivin−1 + β2
i vin−2 + β3

i vin−3 + (5)

Let us note that the speed at which the older observations are smoothed (damp-
ened) depends on β. When β is close to 0, dampening is quick, and when it is close
to 1, dampening is slow.

The general solving procedure including the choice function can be seen in Fig. 2b.
Three new function calls have been included: for calculating the indicators (line 4),
the choice functions (line 5), and for choosing promising strategy (line 6), that is, the
one with highest choice function. They are called every time the solver is invoked to
fix a variable by enumeration, i.e., after instantiation. Let us notice that procedures
for selecting variables and values (lines 2 and 13) have been modified to respond to
the dynamic replacement of strategies.

2.1.5. Choice Function Tuning with a Multilevel Structure

The search for the best tuning of parameters αi of the CSP solver (based on
the Choice Function) may be formulated as an optimization problem. Hence, this
meta-optimization approach may be performed by a metaheuristic. This approach is
composed of two levels [20]: the meta-level and the base level. At the meta-level, a
metaheuristic operates on solutions representing the parameters of the metaheuristic

Dynamic Selection of Enumeration Strategies for Solving CSP 117

to optimize. A solution X at the meta-level will represent all the parameters we want
to optimize. At the meta-level, the objective function fm associated with a solution
X is a performance indicator of the metaheuristic using the parameters specified
by the solution X. Hence, to each solution X of the meta-level will correspond an
independent metaheuristic in the base level. The metaheuristic of the base level
operates on solutions that encode solutions of the original problem. The objective
function fb used by the metaheuristics of the base level is associated with the target
problem. The study presented in this work at the meta level employs a Genetic
Algorithm to search the heuristic space of choice functions of the base level (see
Fig. 3).

Then, in order to determine the most appropriate set of parameters αi for the
choice function we use a multilevel approach. The parameters are fine-tuned by a
GA which trains the choice function carrying out a sampling phase. Sampling occurs
during an initial information gathering phase where the search is run repeatedly until
a fix cutoff (i.e., until a fixed number of variables instantiated, number of visited
nodes, number of backtracks or number of steps). After sampling, the problem is
solved with the most promising set of parameter values for the choice function.

The upper-level GA simulates, evaluates and evolves different combinations of
parameters, relieving the task of manual parameterization. Each member of the
population encodes the parameters of a choice function, then these individuals are
used in order to create a choice function instance. Each choice function instantiated
(i.e. each chromosome) is evaluated in a sampling phase trying to solve partially
the problem at hand. An indicator of process performance is used as a fitness value
for the chromosome, (number of visited nodes, number of backtracks or number of
steps). After each chromosome of the population is evaluated, selection, crossover and
mutation are used to breed a new population of choice functions. As noted above, the
multilevel approach is used to tune the choice function, the resulting choice function
is applied to solve the entire CSP problem.

Figure 3. Multilevel parameterization.

118 B. Crawford et al.

2.1.6. Workflow through the Hyperheuristic Approach

In this section, we provide a description of the workflow during the execution of
the hyperheuristic approach proposed in this work. We describe the main steps of the
hyperheuristic approach and then we detail the entire solving process.

From a high level point of view, our approach works as follows. The first step fixes
the solving options; a portfolio of enumeration strategies and fixes the indicators (see
Section 2.1.1) of the choice function. The evaluation value of the GA fitness (i.e.,
number of visited nodes, number of backtracks or number of steps) and the cutoff
value (i.e. percentage or number of fixed variables or number of visited nodes or
number of backtracks or number of steps) of process for tuning the choice function
are fixed. Then, the choice function is tuned and the problem solving starts.

Figure 4. Problem Solving activity diagram.

The problem solving (see Fig. 4) starts loading a model where the variables of the
problem, the domains of them, and the constraints are defined. Finally, a constraint
propagation process starts in order to detect local inconsistencies earlier and prune the
domains. Once a model has been loaded, the choice functions are zero initialized (for
all the enumeration strategies) for the purpose of choosing an enumeration strategy
to apply by the solver. Then the system takes snapshots and the snapshots feed
the process of indicator analysis. Subsequently, the choice function is evaluated, the
enumeration strategies are ranked and an enumeration strategy is selected continuing
the cycle of the solving process. Finally, if all the variables have been fixed, a solution
is reported. The choice function breaks ties randomly 1.

1It is handled in a way keeping a “good previous random ordering”, that is, an ordering that has
been used in the choice function tuning phase to break ties.

Dynamic Selection of Enumeration Strategies for Solving CSP 119

3. Experimental Evaluation

In this Section, we provide a performance evaluation of our approach. We have
implemented a solver using ECLiPSe Constraint Programming System version 5.10
and java with NetBeans IDE 6.7.1. Tests have been performed on a 2.33GHZ Intel
Core2 Duo with 2GB RAM running Windows XP. The problems used to test our
approach were the following: N-queens (NQ), 10 linear equations (eq-10), 20 linear
equations (eq-20), Magic square (MS), Latin square (LS), Sudoku (Sud) and Knight
tour problem (KTP).

The variable selection heuristics used in the experiments are:

• input order : the first entry in the list is selected.
• anti first fail : the entry with the largest domain size is selected.
• first fail : the entry with the smallest domain size is selected (also known as
minimun remaining values).

• occurrence: the entry with the largest number of attached constraints is selected.

The value selection heuristics used are:

• indomain(Var,min): it starts with the smallest element and upon backtracking
tries successive elements until the entire domain has been explored.

• indomain(Var,max): it starts the enumeration from the largest value down-
wards.

The combination of variable and value selection heuristics generates eight enumeration
strategies as shown in Table 4.

Table 4. Enumeration strategies used

S1 = input order+indomain(Var,min)

S2 = anti first fail+indomain(Var,min)

S3 = first fail+indomain(Var,min)

S4 = occurrence+indomain(Var,min)

S5 = input order+indomain(Var,max)

S6 = anti first fail+indomain(Var,max)

S7 = first fail+indomain(Var,max)

S8 = occurrence+indomain(Var,max)

Considering the correlation analysis of the indicators we considered the following
combinations of them in order to test some different choice functions (see Table 5).

Table 5. Choice functions used in the experiments

CF1: α1B + α2V F + α3V FPS + α4Thrash CF13: α1N + α2d+ α3V FPS + α4Thrash
CF2: α1B + α2V F + α3V FPS + α4d pr CF14: α1N + α2d+ α3V FPS + α4d pr
CF3: α1B + α2V F + α3PV FPS + α4Thrash CF15: α1N + α2d+ α3PV FPS + α4Thrash
CF4: α1B + α2V F + α3PV FPS + α4d pr CF16: α1N + α2d+ α3PV FPS + α4d pr
CF5: α1B + α2d+ α3V FPS + α4Thrash CF17: α1B + α2V U + α3V FPS + α4Thrash
CF6: α1B + α2d+ α3V FPS + α4d pr CF18: α1B + α2V U + α3V FPS + α4d pr
CF7: α1B + α2d+ α3PV FPS + α4Thrash CF19: α1B + α2V U + α3PV FPS + α4Thrash
CF8: α1B + α2d+ α3PV FPS + α4d pr CF20: α1B + α2V U + α3PV FPS + α4d pr

120 B. Crawford et al.

The genetic algorithm used to obtain the best weights (α’s) of the choice functions
was implemented using the following parameters: number of generation=20, popula-
tion size=30,crossover type=uniform, crossover rate=0.4, mask probability=0.5, mu-
tation rate=0.025, selector tournament size=3, tournament selector parameter=0.75,
fitness=number of visited nodes. The GA was implemented using the Java Genetic
Algorithm Package2 (JGAP) version 3.5. The basic behavior of a GA implemented
using JGAP contains three main steps: a setup phase, the creation of the initial
population and the evolution of the population.

For comparison with our choice function approach (using the portfolio of 8 enumer-
ation strategies), we considered 8 enumeration strategies used solely (F+ID, AMRV
+ ID, MRV + ID, O + ID, F + IDM, AMRV + IDM, MRV + IDM, and O +
IDM), and a random selection. In the experiments with Random and Choice Func-
tion approaches we show min (the minimum value), avg (the average obtained of
the experiments where a solution was found before the timeout of 65535 steps), sd
(the standard deviation), max (the maximum value) and [%] (the percentage of the
experiments performed before the timeout is reached).

3.1. Results

For each measurement, the results were obtained over 30 experiments. Due to
space constraints, in this work we present results based on number of backtracks.
Tables 6a, 6b, 7a, 7b and 7c present the results measured in terms of number of
backtracks. More precisely, Table 6a shows the results related to the N-Queens prob-
lem. Tables 6b, 7a, 7b and 7c show the results related to the problems Magic square,
Sudoku, Latin square and Knight tour respectively.

3.2. Discussion of Results

Our results agree with previous works showing good performance for strategies
following the first-fail principle for variable selection (starting with those variables
more difficult to assign values), strategies S3 and S7 in our work. Our decision-
making proposal is a structured process and the research shows that its results are,
on average, clearly better than the random selection of enumeration strategies. For
many problems one of our choice functions was at least in top-3 ranking, finding
effective dynamic ways to improve the commutation of enumeration strategies during
the search. This show the ability of our approach to adapt itself to a different problem
and that it could adapt itself and converge to an efficient strategy for the problem
at hand. In agreement with other algorithms devised for constraint satisfaction that
depend on sampling before or during the search, our approach was very encouraging.
The sampling, performed in the choice function tuning phase, is a kind of random
probing [23] where the global improvements are due in large part to better variable
selections at the top of the search tree. After observing the trace, we have verified
that if a good strategy from the portfolio is selected at the top of search tree, it is
maintained operating. In other case, a badly evaluated strategy is replaced quickly.

2http://jgap.sourceforge.net/

Dynamic Selection of Enumeration Strategies for Solving CSP 121

T
a
b
le

6
a
.
N
u
m
b
er

o
f
B
a
ck
tr
a
ck
s
so
lv
in
g
N
-Q

u
ee
n
s
p
ro
b
le
m

w
it
h
d
iff
er
en
t
st
ra
te
g
ie
s

S
tr
at
eg
y

N
Q

N
Q

N
Q

N
Q

N
Q

n
=
8

n
=
9

n
=
1
0

n
=
11

n
=
12

S
1

10
2

6
2

15
S
2

11
2

1
2

39
11

S
3

10
2

4
5

16
S
4

10
2

6
2

15
S
5

10
2

6
2

15
S
6

11
2

1
2

39
11

S
7

10
2

4
5

16
S
8

10
2

6
2

15

(m
in
)
av

g
±

sd
(m

ax
)
[%

]
(m

in
)
av

g
±

sd
(m

a
x
)
[%

]
(m

in
)
av

g
±

sd
(m

ax
)
[%

]
(m

in
)
av

g
±

sd
(m

a
x
)
[%

]
(m

in
)
av

g
±

sd
(m

ax
)
[%

]
R
an

d
om

(4
)
7,
5
±

2,
2
(1
2)

[1
00

]
(1
)
5
,3

±
3
,6

(1
1
)
[1
0
0
]

(2
)
9
,5

±
5
,3

(2
1)

[1
0
0]

(0
)
1
5,
5
±

8
,6

(3
3
)
[1
00

]
(2
)
1
6
,4

±
11

,7
(3
9)

[1
00

]
C
F
1

(4
)
5,
7
±

2,
2
(1
0)

[1
00

]
(1
)
4
,5

±
3
,6

(1
1
)
[1
0
0
]

(4
)
7
,1

±
2
(1
1
)
[1
0
0
]

(0
)
5
,1

±
6,
4
(2
1)

[1
0
0
]

(1
)
1
4
,9

±
9,
8
(4
8)

[1
00

]
C
F
2

(4
)
6,
3
±

2,
5
(1
0)

[1
00

]
(1
)
3
,8

±
3
,4

(1
0
)
[1
0
0
]

(4
)
6,
4
±

1
,5

(9
)
[1
0
0
]

(0
)
5
,1

±
8,
3
(3
8)

[1
0
0
]

(0
)
1
6
,5

±
13

,4
(4
6)

[1
00

]
C
F
3

(4
)
6,
4
±

2,
2
(1
0)

[1
00

]
(1
)
4
±

3,
2
(1
0)

[1
0
0
]

(2
)
6
,4

±
1
,9

(1
0)

[1
0
0]

(0
)
5
,9

±
7,
5
(2
7)

[1
0
0
]

(0
)
1
1
,5

±
10

,4
(4
8)

[1
00

]
C
F
4

(4
)
6,
4
±

2,
2
(1
0)

[1
00

]
(1
)
4,
4
±

3
(1
0
)
[1
00

]
(4
)
7
±

1,
6
(1
0
)
[1
0
0
]

(0
)
4
±

5
,1

(2
0
)
[1
0
0
]

(0
)
1
3
,8

±
7,
9
(2
5)

[1
00

]
C
F
5

(4
)
5,
6
±

2,
2
(1
0)

[1
00

]
(1
)
4
,2

±
3
,5

(1
0
)
[1
0
0
]

(4
)
6
,5

±
1
,5

(1
0)

[1
0
0]

(0
)
4
,7

±
7,
8
(3
4)

[1
0
0
]

(0
)
1
4
,2

±
10

,6
(4
7)

[1
00

]
C
F
6

(4
)
5,
8
±

2,
1
(1
0)

[1
00

]
(1
)
4
,8

±
3
,9

(1
0
)
[1
0
0
]

(4
)
6
,4

±
1
,4

(1
1)

[1
0
0]

(0
)
4
,1

±
5
(1
6)

[1
0
0]

(2
)
1
3,
9
±

8
(3
0)

[1
00

]
C
F
7

(4
)
6,
2
±

2,
2
(1
0)

[1
00

]
(1
)
3
,9

±
3
,2

(1
0
)
[1
0
0
]

(5
)
6
,6

±
1
,3

(1
0)

[1
0
0]

(0
)
4
,4

±
6,
8
(3
5)

[1
0
0
]

(0
)
1
2
±

8,
8
(2
9)

[1
00

]
C
F
8

(4
)
5,
7
±

2
(1
0)

[1
00

]
(1
)
4
,4

±
3
,7

(1
0
)
[1
0
0
]

(4
)
6
,8

±
1
,4

(1
0)

[1
0
0]

(0
)
6
,5

±
9,
9
(3
7)

[1
0
0
]

(3
)
1
6
,7

±
13

(5
0)

[1
00

]
C
F
9

(4
)
6
±

2
(1
0)

[1
00

]
(1
)
4
,5

±
3
,5

(1
1
)
[1
0
0
]

(5
)
7
,3

±
2
(1
2
)
[1
0
0
]

(0
)
5
,2

±
6,
2
(1
9)

[1
0
0
]

(0
)
9,
9
±

8,
8
(3
1)

[1
00

]
C
F
1
0

(4
)
5,
1
±

1,
7
(1
0)

[1
00

]
(1
)
4
,3

±
3
,5

(1
0
)
[1
0
0
]

(4
)
6
,6

±
1
,6

(1
2)

[1
0
0]

(0
)
5
,4

±
7,
5
(3
1)

[1
0
0
]

(1
)
1
3
,6

±
9,
7
(4
5)

[1
00

]
C
F
1
1

(4
)
6,
2
±

2,
3
(1
0)

[1
00

]
(1
)
4
,2

±
3
,3

(1
0
)
[1
0
0
]

(4
)
6
,7

±
1
,2

(1
0)

[1
0
0]

(0
)
6
,6

±
9
(3
2)

[1
0
0]

(2
)
1
2
,4

±
8,
4
(3
9)

[1
00

]
C
F
1
2

(4
)
6,
3
±

2,
1
(1
0)

[1
00

]
(1
)
4
,2

±
3
,4

(1
1
)
[1
0
0
]

(4
)
6
,9

±
1
,9

(1
2)

[1
0
0]

(0
)
3
,2

±
4,
9
(2
0)

[1
0
0
]

(0
)
1
4
,2

±
10

,8
(4
5)

[1
00

]
C
F
1
3

(4
)
6,
2
±

2,
2
(1
0)

[1
00

]
(1
)
4
,5

±
3
,6

(1
1
)
[1
0
0
]

(4
)
6
,6

±
1
,6

(1
0)

[1
0
0]

(0
)
4
,9

±
6
(1
7)

[1
0
0]

(0
)
1
5
,2

±
10

,3
(4
4)

[1
00

]
C
F
1
4

(4
)
5,
7
±

2,
1
(1
0)

[1
00

]
(1
)
5
,1

±
3
,7

(1
1
)
[1
0
0
]

(5
)
7
,2

±
1
,4

(1
1)

[1
0
0]

(0
)
6
,7

±
8,
7
(3
4)

[1
0
0
]

(0
)
1
3
,5

±
10

,8
(4
7)

[1
00

]
C
F
1
5

(4
)
5,
9
±

1,
9
(1
0)

[1
00

]
(1
)
4
,3

±
3
,6

(1
0
)
[1
0
0
]

(4
)
6
,9

±
1
,6

(1
1)

[1
0
0]

(0
)
4
,7

±
6,
1
(2
1)

[1
0
0
]

(0
)
9,
5
±

6,
6
(2
1)

[1
00

]
C
F
1
6

(4
)
6,
5
±

2,
3
(1
0)

[1
00

]
(1
)
4
,3

±
3
,4

(1
0
)
[1
0
0
]

(4
)
6
,8

±
1
,6

(1
0)

[1
0
0]

(0
)
2
,9

±
4,
4
(1
6)

[1
0
0
]

(1
)
1
3
,8

±
7,
9
(3
0)

[1
00

]
C
F
1
7

(4
)
6,
8
±

2,
4
(1
0)

[1
00

]
(1
)
4
,1

±
3
,6

(1
0
)
[1
0
0
]

(2
)
6
,4

±
2
,1

(1
3)

[1
0
0]

(0
)
5
,4

±
8,
5
(4
1)

[1
0
0
]

(1
)
1
5
,5

±
9,
9
(3
7)

[1
00

]
C
F
1
8

(4
)
6,
7
±

1,
9
(1
0)

[1
00

]
(1
)
3
,5

±
3
,4

(1
1
)
[1
0
0
]

(4
)
6
,5

±
1
,7

(1
1)

[1
0
0]

(0
)
8
±

8
,9

(3
2
)
[1
0
0
]

(1
)
1
3
,9

±
12

,5
(4
5)

[1
00

]
C
F
1
9

(4
)
6,
4
±

1,
9
(1
0)

[1
00

]
(1
)
3,
3
±

3
(1
1
)
[1
00

]
(4
)
6
,9

±
2
,4

(1
6)

[1
0
0]

(1
)
6
,2

±
7,
8
(3
4)

[1
0
0
]

(1
)
1
2
,7

±
10

(4
7)

[1
00

]
C
F
2
0

(4
)
7,
1
±

2,
5
(1
0)

[1
00

]
(1
)
5
,1

±
3
,8

(1
1
)
[1
0
0
]

(2
)
6
,2

±
2
(1
0
)
[1
0
0
]

(0
)
7
,9

±
9,
6
(3
5)

[1
0
0
]

(0
)
1
5
,8

±
10

,1
(5
0)

[1
00

]
C
F
2
1

(4
)
5,
9
±

2,
1
(1
0)

[1
00

]
(1
)
4
,5

±
3
,4

(1
0
)
[1
0
0
]

(4
)
6
,8

±
1
,7

(1
1)

[1
0
0]

(1
)
6
,3

±
1
0
,1

(3
5
)
[1
00

]
(0
)
1
5
,4

±
11

,3
(4
5)

[1
00

]
C
F
2
2

(4
)
6
±

2,
1
(1
0)

[1
00

]
(1
)
3
,9

±
3
,5

(1
0
)
[1
0
0
]

(4
)
6
,7

±
1
,4

(1
0)

[1
0
0]

(0
)
5
,1

±
6,
7
(3
1)

[1
0
0
]

(0
)
1
4
±

8,
1
(2
7)

[1
00

]
C
F
2
3

(4
)
6,
4
±

2,
4
(1
0)

[1
00

]
(1
)
3
,6

±
3
,2

(1
0
)
[1
0
0
]

(4
)
6
,7

±
2
,1

(1
3)

[1
0
0]

(0
)
2
,8

±
4,
1
(1
6)

[1
0
0
]

(1
)
1
4
,6

±
7,
5
(3
6)

[1
00

]
C
F
2
4

(4
)
6
±

2
(1
0)

[1
00

]
(1
)
4
,5

±
3
,6

(1
1
)
[1
0
0
]

(2
)
6
,7

±
2
,6

(1
1)

[1
0
0]

(0
)
5
,1

±
6,
6
(2
8)

[1
0
0
]

(0
)
1
4
,6

±
11

,5
(5
0)

[1
00

]

122 B. Crawford et al.

T
a
b
le

6
b
.
N
u
m
b
er

o
f
B
a
ck
tr
a
ck
s
so
lv
in
g
M
a
g
ic

S
q
u
a
re

p
ro
b
le
m

w
it
h
d
iff
er
en

t
st
ra
te
g
ie
s

S
tr
at
eg
y

M
S

M
S

M
S

n
=
3

n
=
4

n
=
5

S
1

0
1
2

9
10

S
2

4
1
1
9
1

>
46

6
7
5

S
3

0
3

1
85

S
4

0
1
0

5
2
3
1

S
5

1
5
1

>
47

7
4
8

S
6

0
4
2

>
44

1
5
7

S
7

1
9
7

>
47

9
3
5

S
8

1
2
9

>
39

0
0
8

(m
in
)
av

g
±

sd
(m

ax
)
[%

]
(m

in
)
av

g
±

sd
(m

ax
)
[%

]
(m

in
)
av

g
±

sd
(m

a
x
)
[%

]
R
an

d
om

(0
)
0,
7
±

1,
2
(4
)
[1
00

]
(0
)
3
1
,1

±
4
3
,9

(1
8
4)

[1
0
0
]

(1
)
3
8
31

±
8
4
0
2,
7
(3
7
9
8
6)

[6
6
,7
]

C
F
1

(0
)
0
,7

±
1
(4
)
[1
0
0
]

(0
)
5
1
,8

±
6
7
,3

(1
8
1)

[1
0
0
]

(0
)
1
6
15

,5
±

4
4
4
7,
1
(1
9
6
4
0)

[7
0
]

C
F
2

(0
)
0,
5
±

0,
8
(4
)
[1
00

]
(0
)
5
1
,9

±
7
4
,8

(1
8
2)

[1
0
0
]

(0
)
9
76

,9
±

3
24

6
,3

(1
3
11

3
)
[5
3
,3
]

C
F
3

(0
)
0,
7
±

1,
2
(4
)
[1
00

]
(0
)
3
8
,3

±
5
0
,3

(1
8
1)

[1
0
0
]

(0
)
1
5
02

,5
±

4
5
6
2,
7
(1
9
6
3
3)

[8
0
]

C
F
4

(0
)
1,
1
±

1,
5
(4
)
[1
00

]
(0
)
3
8
,4

±
5
0
,8

(1
8
1)

[1
0
0
]

(0
)
7
34

,9
±

2
68

3
,9

(1
2
90

6
)
[7
6
,7
]

C
F
5

(0
)
0,
5
±

0,
8
(4
)
[1
00

]
(0
)
4
5
,3

±
6
2
,4

(1
8
1)

[1
0
0
]

(0
)
8
9
2,
6
±

1
6
8
9,
4
(6
3
4
6
)
[8
0]

C
F
6

(0
)
0
,8

±
1
(4
)
[1
0
0
]

(0
)
5
4
,6

±
5
8
,2

(1
9
3)

[1
0
0
]

(0
)
58

6
,4

±
14

2
4
,8

(6
65

6
)
[8
3
,3
]

C
F
7

(0
)
0,
8
±

1,
2
(4
)
[1
00

]
(0
)
6
9
,9

±
7
4
,4

(1
8
1)

[1
0
0
]

(3
)
17

1
6
,4

±
32

7
6
,2

(1
29

1
8
)
[7
6
,7
]

C
F
8

(0
)
0,
8
±

1,
2
(4
)
[1
00

]
(0
)
4
5
,2

±
6
5
,4

(1
8
1)

[1
0
0
]

(0
)
2
1
9,
9
±

3
4
6,
4
(1
44

1
)
[7
0
]

C
F
9

(0
)
0,
9
±

1,
5
(4
)
[1
00

]
(0
)
3
5
,7

±
4
6
,8

(1
4
9)

[1
0
0
]

(0
)
6
83

,1
±

2
46

4
(1
29

0
6
)
[9
0
]

C
F
1
0

(0
)
0,
5
±

0,
8
(4
)
[1
00

]
(0
)
4
3
,9

±
5
2
,8

(1
8
1)

[1
0
0
]

(0
)
10

4
7
,6

±
28

4
6
,9

(1
29

0
6
)
[7
6
,7
]

C
F
1
1

(0
)
0,
9
±

1,
3
(4
)
[1
00

]
(0
)
4
9
,3

±
6
2
,2

(1
8
1)

[1
0
0
]

(4
)
12

3
3
,3

±
34

2
1
,4

(1
48

2
3
)
[6
3
,3
]

C
F
1
2

(0
)
0,
4
±

0,
8
(4
)
[1
00

]
(0
)
3
4
,3

±
5
2
,6

(1
8
1)

[1
0
0
]

(0
)
2
2
53

,5
±

5
0
9
5,
7
(1
9
6
3
2)

[7
0
]

C
F
1
3

(0
)
1,
2
±

1,
6
(4
)
[1
00

]
(0
)
5
1
,3

±
5
9
,7

(1
8
1)

[1
0
0
]

(1
5
)
1
1
4
9,
2
±

3
2
89

,8
(1
4
8
23

)
[7
0]

C
F
1
4

(0
)
0,
8
±

1,
2
(4
)
[1
00

]
(0
)
2
5
,3

±
3
3
,5

(1
1
1)

[1
0
0
]

(0
)
99

3
,4

±
20

1
5
,2

(6
98

8
)
[5
6
,7
]

C
F
1
5

(0
)
1,
1
±

1,
4
(4
)
[1
00

]
(0
)
4
0
,1

±
5
3
,7

(1
7
4)

[1
0
0
]

(0
)
14

3
5
,5

±
37

2
1
,6

(1
48

2
3
)
[5
3
,3
]

C
F
1
6

(0
)
0,
9
±

1,
3
(4
)
[1
00

]
(0
)
6
0
,1

±
5
7
,2

(1
8
1)

[1
0
0
]

(0
)
1
0
07

,2
±

3
2
8
0
(1
4
8
27

)
[6
6,
7
]

C
F
1
7

(0
)
0,
5
±

0,
8
(4
)
[1
00

]
(2
)
5
6
,4

±
6
9
,1

(1
8
1)

[1
0
0
]

(1
1)

72
9
±

10
2
8
(3
1
3
8
)
[5
3
,3
]

C
F
1
8

(0
)
1
±

1
,3

(4
)
[1
0
0
]

(0
)
3
5
,1

±
5
4
,4

(1
7
9)

[1
0
0
]

(1
)
29

6
2
,9

±
80

1
1
,8

(3
32

8
5
)
[6
6
,7
]

C
F
1
9

(0
)
1
±

1
,3

(4
)
[1
0
0
]

(0
)
3
6
±

5
2,
4
(1
8
1
)
[1
0
0
]

(3
)
5
1
52

,6
±

8
4
8
9,
5
(2
3
5
9
8)

[5
0
]

C
F
2
0

(0
)
0,
7
±

1,
2
(4
)
[1
00

]
(1
)
3
5
,4

±
4
8
,6

(1
6
0)

[1
0
0
]

(1
)
75

3
,6

±
12

0
6
,1

(4
57

6
)
[5
6
,7
]

C
F
2
1

(0
)
1,
1
±

1,
6
(4
)
[1
00

]
(0
)
4
0
±

6
2,
8
(1
8
1
)
[1
0
0
]

(0
)
5
82

,8
±

98
9
,6

(3
6
38

)
[4
6,
7
]

C
F
2
2

(0
)
0,
9
±

1,
2
(4
)
[1
00

]
(0
)
3
7
,5

±
5
9
,6

(1
8
1)

[1
0
0
]

(0
)
3
9
7,
6
±

9
1
2,
5
(4
06

1
)
[7
0
]

C
F
2
3

(0
)
0,
8
±

1,
4
(4
)
[1
00

]
(0
)
6
0
,8

±
7
6
,1

(1
8
1)

[1
0
0
]

(0
)
6
5
2,
8
±

9
6
9,
2
(3
20

8
)
[6
0
]

C
F
2
4

(0
)
0
,7

±
1
(4
)
[1
0
0
]

(0
)
3
3
,8

±
5
2
,9

(1
8
1)

[1
0
0
]

(1
8)

91
3
,3

±
16

5
5
,8

(6
93

3
)
[6
6
,7
]

Dynamic Selection of Enumeration Strategies for Solving CSP 123

Table 7a. Number of Backtracks solving Sudoku problem

with different strategies

Strategy Sud Sud
2 12

S1 18 0

S2 10439 1

S3 4 2

S4 18 0

S5 2 3

S6 6541 3

S7 9 1

S8 2 3

(min) avg ± sd (max) [%] (min) avg ± sd (max) [%]

Random (3) 101,2 ± 71,9 (261) [100] (0) 1,8 ± 1,2 (4) [100]

CF1 (0) 5,5 ± 5,7 (23) [100] (0) 1,4 ± 0,9 (3) [100]

CF2 (0) 41,6 ± 184,8 (1019) [100] (0) 0,8 ± 0,9 (2) [100]

CF3 (1) 8,2 ± 16,1 (81) [100] (0) 1,2 ± 0,9 (3) [100]

CF4 (0) 12,9 ± 36,4 (203) [100] (0) 1 ± 0,9 (2) [100]

CF5 (0) 10,5 ± 20 (107) [100] (0) 1,3 ± 0,8 (2) [100]

CF6 (2) 6,1 ± 8,4 (45) [100] (0) 1 ± 0,8 (2) [100]

CF7 (0) 18,6 ± 34,3 (154) [100] (0) 1,4 ± 0,9 (3) [100]

CF8 (0) 8,1 ± 11,5 (58) [100] (0) 1,3 ± 1 (3) [100]

CF9 (1) 8,3 ± 13,6 (59) [100] (0) 0,9 ± 0,9 (2) [100]

CF10 (0) 7,4 ± 15 (82) [100] (0) 1,4 ± 0,9 (3) [100]

CF11 (0) 4,8 ± 5 (18) [100] (0) 1,2 ± 1 (3) [100]

CF12 (2) 11,5 ± 17,5 (74) [100] (0) 1,2 ± 1 (3) [100]

CF13 (0) 7,6 ± 16,5 (92) [100] (0) 1,2 ± 0,9 (2) [100]

CF14 (2) 43,8 ± 208,6 (1148) [100] (0) 1,4 ± 1 (3) [100]

CF15 (0) 10,1 ± 17,6 (86) [100] (0) 1,4 ± 0,9 (3) [93,3]

CF16 (0) 9,5 ± 16,2 (68) [100] (0) 1,2 ± 0,9 (3) [100]

CF17 (2) 23,9 ± 58,5 (322) [100] (0) 1,1 ± 1,1 (3) [100]

CF18 (0) 50,5 ± 209,9 (1158) [100] (0) 1,4 ± 0,8 (3) [100]

CF19 (1) 14,2 ± 19,4 (81) [100] (0) 1,3 ± 0,9 (3) [100]

CF20 (2) 7,8 ± 7,1 (25) [100] (0) 1,2 ± 0,9 (2) [100]

CF21 (1) 13,4 ± 23,5 (75) [100] (0) 1,4 ± 1 (3) [100]

CF22 (2) 120,8 ± 595,4 (3272) [100] (0) 1,4 ± 0,9 (3) [100]

CF23 (2) 12,5 ± 16,4 (67) [100] (0) 1,3 ± 0,8 (2) [100]

CF24 (1) 11,2 ± 18,9 (85) [100] (0) 1,1 ± 1 (3) [100]

124 B. Crawford et al.

T
a
b
le

7
b
.
N
u
m
b
er

o
f
B
a
ck
tr
a
ck
s
so
lv
in
g
L
a
ti
n
S
q
u
a
re

p
ro
b
le
m

w
it
h
d
iff
er
en

t
st
ra
te
g
ie
s

S
tr
at
eg
y

L
S

L
S

L
S

L
S

n
=
5

n
=
6

n
=
7

n
=
9

S
1

0
0

9
18

S
2

9
16
3

>
20
67
9

>
23
86
0

S
3

0
0

0
0

S
4

0
0

9
18

S
5

0
0

9
18

S
6

9
16
3

>
20
67
9

>
23
86
0

S
7

0
0

0
0

S
8

0
0

9
18

(m
in
)
av

g
±

sd
(m

ax
)
[%

]
(m

in
)
av

g
±

sd
(m

ax
)
[%

]
(m

in
)
av

g
±

sd
(m

a
x
)
[%

]
(m

in
)
av

g
±

sd
(m

ax
)
[%

]
R
an

d
om

(0
)
0
±

0
,2

(1
)
[1
0
0]

(0
)
0,
1
±

0,
3
(1
)
[1
00
]

(0
)
46
,9

±
25
1,
3
(1
3
77
)
[1
00
]

(0
)
1
81
,1

±
56
5,
7
(2
34
2)

[9
3,
3]

C
F
1

(0
)
1,
4
±

3,
2
(9
)
[1
00
]

(0
)
8,
9
±

32
,6

(1
63
)
[1
00
]

(0
)
1,
3
±

3
,3

(9
)
[9
0]

(0
)
3,
6
±

6,
7
(1
8
)
[8
3,
3]

C
F
2

(0
)
1,
8
±

3,
6
(9
)
[1
00
]

(0
)
17
,7

±
44
,9

(1
6
3)

[1
00
]

(0
)
10
,3

±
45

(2
35
)
[9
0]

(0
)
2,
1
±

5
(1
8)

[8
3,
3]

C
F
3

(0
)
0
±

0
(0
)
[1
00
]

(0
)
7,
8
±

32
(1
6
3)

[1
00
]

(0
)
2,
2
±

3,
9
(9
)
[9
6,
7
]

(0
)
6
±

7
,6

(1
8)

[8
6,
7]

C
F
4

(0
)
0,
8
±

2,
5
(9
)
[1
00
]

(0
)
0
±

0
(0
)
[1
00
]

(0
)
0,
7
±

2,
4
(9
)
[8
6,
7
]

(0
)
4,
4
±

7,
2
(1
8
)
[9
3,
3]

C
F
5

(0
)
0,
9
±

2,
7
(9
)
[1
00
]

(0
)
21
,2

±
49
,5

(1
6
3)

[1
00
]

(0
)
3,
7
±

4,
5
(9
)
[9
6,
7
]

(0
)
1,
4
±

4,
8
(1
8)

[9
0]

C
F
6

(0
)
0,
9
±

2,
7
(9
)
[1
00
]

(0
)
15
,1

±
43
,5

(1
6
3)

[1
00
]

(0
)
2,
4
±

4
(9
)
[9
0]

(0
)
4,
8
±

7,
2
(1
8)

[9
0]

C
F
7

(0
)
1,
2
±

3,
1
(9
)
[1
00
]

(0
)
24
,1

±
53
,3

(1
6
3)

[1
00
]

(0
)
2,
5
±

4,
1
(9
)
[8
3,
3
]

(0
)
5,
7
±

8,
2
(1
8)

[9
0]

C
F
8

(0
)
1,
4
±

3,
3
(9
)
[1
00
]

(0
)
23
,4

±
52
,2

(1
6
3)

[1
00
]

(0
)
11
,2

±
45
,4

(2
42
)
[9
3,
3]

(0
)
45
,8

±
17
6,
9
(8
37
)
[7
3,
3]

C
F
9

(0
)
0,
9
±

2,
7
(9
)
[1
00
]

(0
)
2,
1
±

9,
6
(5
2)

[1
00
]

(0
)
28
5,
7
±

13
55
,8

(6
50
5)

[7
6,
7]

(0
)
7,
3
±

8,
9
(1
9
)
[7
6,
7]

C
F
1
0

(0
)
1,
4
±

3,
2
(9
)
[1
00
]

(0
)
1,
8
±

9,
7
(5
3)

[1
00
]

(0
)
30
1
±

15
27
,7

(7
79
1)

[8
6
,7
]

(0
)
2,
7
±

5,
8
(1
8)

[9
0]

C
F
1
1

(0
)
0,
6
±

2,
3
(9
)
[1
00
]

(0
)
18
,4

±
50

(1
63
)
[1
00
]

(0
)
1,
8
±

3,
4
(9
)
[8
6,
7
]

(0
)
4,
1
±

7
(1
8)

[7
6,
7]

C
F
1
2

(0
)
1,
7
±

3,
4
(9
)
[1
00
]

(0
)
12
,5

±
41
,8

(1
6
3)

[1
00
]

(0
)
1,
8
±

3,
6
(9
)
[7
3,
3
]

(0
)
4,
6
±

7,
6
(1
9)

[8
0]

C
F
1
3

(0
)
0,
8
±

2,
5
(9
)
[1
00
]

(0
)
3,
6
±

19
,9

(1
09
)
[1
00
]

(0
)
1,
8
±

3,
6
(9
)
[8
6,
7
]

(0
)
3,
6
±

7,
1
(1
8)

[9
0]

C
F
1
4

(0
)
1,
2
±

3,
1
(9
)
[1
00
]

(0
)
81
,9

±
40
9,
7
(2
24
5)

[1
00
]

(0
)
74
,7

±
37
7,
4
(1
96
3)

[9
0]

(0
)
7,
9
±

11
,4

(4
7)

[8
6,
7]

C
F
1
5

(0
)
10
,2

±
4
8
(2
64
)
[1
00
]

(0
)
4,
7
±

18
,1

(8
2)

[1
00
]

(0
)
1,
1
±

2
,9

(9
)
[9
0]

(0
)
5,
3
±

8,
2
(1
8
)
[9
3,
3]

C
F
1
6

(0
)
0,
9
±

2,
6
(9
)
[1
00
]

(0
)
45

±
20
9,
3
(1
14
1)

[1
00
]

(0
)
2,
1
±

3
,8

(9
)
[9
0]

(0
)
7,
3
±

8,
4
(1
8
)
[9
3,
3]

C
F
1
7

(0
)
0,
3
±

1,
6
(9
)
[1
00
]

(0
)
14
,7

±
43

(1
63
)
[1
00
]

(0
)
1,
7
±

3,
5
(9
)
[8
6,
7
]

(0
)
68
,6

±
30
0
,2

(1
44
5)

[7
6,
7]

C
F
1
8

(0
)
1,
1
±

2,
8
(9
)
[1
00
]

(0
)
24
,1

±
56
,9

(1
6
3)

[1
00
]

(0
)
3,
9
±

6,
9
(3
0)

[8
0]

(0
)
4
0,
1
±

12
5,
3
(6
1
4)

[8
0]

C
F
1
9

(0
)
0,
9
±

2,
7
(9
)
[1
00
]

(0
)
6,
8
±

30
,3

(1
63
)
[1
00
]

(0
)
5
±

7
(2
6)

[8
0]

(0
)
7,
1
±

11
,1

(4
0)

[8
3,
3]

C
F
2
0

(0
)
1,
2
±

3,
1
(9
)
[1
00
]

(0
)
5,
5
±

23
,1

(1
20
)
[1
00
]

(0
)
11
,7

±
34
,3

(1
32
)
[9
3,
3]

(0
)
10
,8

±
27

(1
40
)
[9
0]

C
F
2
1

(0
)
1
±

2
,7

(9
)
[1
0
0]

(0
)
16
,3

±
49
,7

(1
6
3)

[1
00
]

(0
)
8,
6
±

38
,1

(1
87
)
[8
0]

(0
)
4,
4
±

7,
6
(1
8
)
[7
3,
3]

C
F
2
2

(0
)
0,
4
±

1,
5
(6
)
[1
00
]

(0
)
14
,1

±
42
,3

(1
6
3)

[1
00
]

(0
)
3
±

6,
2
(2
6
)
[8
6,
7]

(0
)
31
,7

±
11
4,
3
(5
54
)
[7
6,
7]

C
F
2
3

(0
)
1
±

2
,5

(9
)
[1
0
0]

(0
)
8,
7
±

31
,8

(1
63
)
[9
6,
7]

(0
)
0,
7
±

2,
5
(9
)
[8
3,
3
]

(0
)
7,
7
±

10
,8

(4
0)

[8
0]

C
F
2
4

(0
)
1,
2
±

3,
1
(9
)
[1
00
]

(0
)
1,
4
±

7,
5
(4
1)

[1
00
]

(0
)
2,
2
±

3,
8
(9
)
[8
3,
3
]

(0
)
4,
6
±

7,
5
(1
8
)
[8
3,
3]

Dynamic Selection of Enumeration Strategies for Solving CSP 125

Table 7c. Number of Backtracks solving Knight Tour

problem with different strategies

Strategy KTP
n=5

S1 767

S2 >42889

S3 767

S4 >22868

S5 767

S6 >42889

S7 767

S8 >22869

(min) avg ± sd (max) [%]

Random (10364) 15481,2 ± 6625,1 (26518) [16,7]

CF1 (767) 10217,6 ± 17044,7 (48500) [23,3]

CF2 (40) 3231,3 ± 3350,7 (8156) [23,3]

CF3 (620) 9770,8 ± 11860,3 (27083) [13,3]

CF4 (4) 6158,7 ± 11205,9 (29680) [23,3]

CF5 (46) 4572,8 ± 3648,4 (8498) [26,7]

CF6 (135) 4395,5 ± 3500,4 (7415) [13,3]

CF7 (4) 5466,3 ± 5507 (15950) [33,3]

CF8 (742) 6921,3 ± 3950,5 (12517) [20]

CF9 (756) 7040,8 ± 4014,3 (15950) [33,3]

CF10 (34) 6987,1 ± 8329,5 (23200) [36,7]

CF11 (767) 6880,1 ± 4277,2 (15987) [43,3]

CF12 (18) 7171,7 ± 8129,1 (26358) [30]

CF13 (172) 4324,1 ± 3920,5 (10942) [33,3]

CF14 (161) 7409,6 ± 10352,6 (41950) [46,7]

CF15 (4) 4378 ± 4229,5 (12215) [30]

CF16 (332) 7319 ± 8659,6 (32753) [40]

CF17 (4) 7178,4 ± 10299,7 (30262) [26,7]

CF18 (41) 2080,5 ± 2681,5 (7398) [20]

CF19 (574) 4500,1 ± 5252,9 (15274) [30]

CF20 (787) 9105,9 ± 8326,1 (24091) [30]

CF21 (2155) 4836,3 ± 2715,6 (8498) [13,3]

CF22 (27) 347 ± 452,5 (667) [6,7]

CF23 (370) 4441,5 ± 4684,6 (8499) [13,3]

CF24 (4) 11357,3 ± 14112,6 (29303) [13,3]

A global view of the search process can be obtained, by measuring its performance
by means of some indicators, but such techniques do not take into account all the
possible features. Many others features could be considered, but they interact in such
unpredictable ways that it is often difficult to specify an adequate form of combining
them. Our work was able to combine dynamically some basic enumeration strategies
using the information of some few indicators of the search.

We used the number of backtracks as a common measure of search effort, it is a

126 B. Crawford et al.

good measure for the quality of both constraint propagation and enumeration. The
CPU runtime measures are quite inaccurate, moreover the resulting time measure
is consistent with the number of backtracks [3]. Considering that for competitions,
the number of instances solved before timeout is the most important performance
indicator, our proposal produce favourable results, as can be seeen in tables showing
the number of backtracks for Magic square, Latin square and Knight tour where
many of the basic strategies reach the timeout and the percentage of our experiments
performed before the timeout is high (see [%] in Tables 6b, 7b, 7c). Then, our
approach improves the percentage of resolution of the solver with a fixed strategy.

Backtracks are the standard counting in most constraint programming environ-
ments, so it facilitates the comparison of the search cost between different meth-
ods [21]. Clearly the measures were able to discriminate between the different strate-
gies. The minimum value of backtracks reached in many experiments using our ap-
proach was zero (see min in Tables 6a, 6b, 7a, 7b and 7c. This demonstrates that it
is possible to design “the best strategy” (or combination of enumeration strategies)
for a specific problem.

4. Conclusions

In this paper we design a dynamic selection mechanism of enumeration strategies
based in the information of the solving process. We are interested in dynamically
detecting bad decisions concerning split strategies during resolution. We evaluate
the efficiency of running strategies, and replace the ones showing bad results. We
define some measures of the solving process, this information is analyzed to draw
some indicators that are used to update the priority of application of enumeration
strategies. The experimental results show that our proposal is able to consistently
satisfy our requirements (of finding solutions well on average for a set of problems).
We are at least in top-3 ranking finding good dynamic ways to solve many problems
using a combination of enumeration strategies.

Among the main contributions of this work we can state the design and imple-
mentation of a solver that is able to measure the search process (using some basic
indicators) in order to perform an on-the-fly replacement of enumeration strategies
(using a portfolio of basic enumeration strategies). The solver is based on enumer-
ation strategies of different natures (based on the size of variable domains, on the
number of occurrences of the variables in the constraints) and some indicators on
the resolution progress (backtracks, visited nodes, variables fixed, shallow backtracks,
deep of the search tree, etc.). These basic components work properly together using
our framework.

On the other hand, we have shown the development of a hybrid solver. In our
approach the replacement of the enumeration strategies is performed depending on
a quality rank (priority), which is computed by means of a choice function based
hyperheuristic and its parameters are fine-tuned by a genetic algorithm. This tuning is
a form of search too. We were focused on a general meta level tuning of the adaptation
mechanism. This could be seen as the resolution of an optimization problem whose
solution would contain the optimal configuration of the choice function.

Dynamic Selection of Enumeration Strategies for Solving CSP 127

From the point of view of the overall performance, considering that for competi-
tions the number of instances solved before timeout is the most important indicator,
our proposal outperforms many of the fixed enumeration strategies (Magic Square
problem can not be solved by 5/8 strategies, Latin Square by 2/8 and Knight Tour
by 4/8).

The correct tuning of the choice function weights has a crucial effect on the ability
of the solver to properly solve specific problems. This setting is required because every
problem has different characteristics. Parameter (choice function weights) tuning was
difficult to achieve because the parameters are problem dependent and the best values
of parameters are not stable along the search. Therefore static weights lead to sub-
optimal searches [15]. Moreover, parameters usually interact in a complex way, so
a single parameter will have a different effect depending on the value of the others
[15]. Then, combining the indicators in other form (non linear) could be an extension
of this work. Additionally, this work may be extended implementing other choice
functions and tuning their parameters with other metaheuristics, benefiting from the
addition of restarting, considering constraint propagation and tackling optimization
problems.

References

[1] Barták R., Rudová H., Limited assignments: A new cutoff strategy for incomplete
depth-first search., in H. Haddad, L. M. Liebrock, A. Omicini, R. L. Wainwright, editors,
SAC, pp. 388–392, ACM, 2005.

[2] Beck J. C., Prosser P., Wallace R. J., Toward understanding variable ordering
heuristics for constraint satisfaction problems, Fourteenth Irish Artificial Intelligence
and Cognitive Science Conference (AICS), pp. 11–16, 2003.

[3] Bessière C., Zanuttini B., Fernandez C., Measuring search trees, Proceedings
ECAI’04 Workshop on Modelling and Solving Problems with Constraints, pp. 31–40,
IOS Press, 2004.

[4] Borrett J. E., Tsang E. P. K., Walsh N. R., Adaptive constraint satisfaction: The
quickest first principle, in W. Wahlster, editor, ECAI, pp. 160–164, John Wiley and
Sons, Chichester, 1996.

[5] Boussemart F., Hemery F., Lecoutre C., Sais L., Boosting systematic search by
weighting constraints, in R. L. de Mántaras, L. Saitta, editors, ECAI, pp. 146–150, IOS
Press, 2004.

[6] Burke E. K., Kendall G., Hart E., Newall J., Ross P., Schulenburg S., Hand-
book of Meta-heuristics, chapter Hyper-heuristics: An Emerging Direction inModern
Search Technology, pp. 457–474, Kluwer, 2003.

[7] Castro C., Monfroy E., Figueroa C., Meneses R., An approach for dynamic split
strategies in constraint solving, in A. F. Gelbukh, A. de Albornoz, H. Terashima-Maŕın,
editors, MICAI, vol. 3789 of LNCS, pp. 162–174, Springer, 2005.

[8] Chenouard R., Granvilliers L., Sebastian P., Search heuristics for constraint-
aided embodiment design, AI EDAM, 23(2):175–195, 2009.

[9] Crawford B., Castro C., Monfroy E., Using a choice function for guiding enumer-
ation in constraint solving, 9th Mexican International Conference on Artificial Intelli-
gence, MICAI 2010, Pachuca, Mexico, November 8–13, 2010, Special Sessions, Revised
Papers, pp. 37–42, 2010.

[10] Crawford B., Soto R., Montecinos M., Castro C., Monfroy E., A framework

128 B. Crawford et al.

for autonomous search in the eclipse solver, 24th IEA/AIE International Conference,
Lecture Notes in Computer Science, Syracuse, USA, 2011, Springer.

[11] Hamadi Y., Monfroy E., Saubion F., What is autonomous search?, Technical Report
MSR-TR-2008-80, Microsoft Research, 2008.

[12] Bayardo Jr. R. J., Miranker D. P., An optimal backtrack algorithm for tree-
structured constraint satisfaction problems, Artif. Intell., 71(1):159–181, 1994.

[13] Liberatore P., On the complexity of choosing the branching literal in dpll, Artif. Intell.,
116(1–2):315–326, 2000.

[14] Mackworth A. K., Freuder E. C., The complexity of some polynomial network consis-
tency algorithms for constraint satisfaction problems, Artif. Intell., 25(1):65–74, 1985.

[15] Maturana J., Saubion F., From parameter control to search control: Parameter con-
trol abstraction in evolutionary algorithms, Constraint Programming Letters, 4(1):39–
65, 2008.

[16] Monfroy E., Castro C., Crawford B., Adaptive enumeration strategies and
metabacktracks for constraint solving, in ADVIS, pp. 354–363, 2006.

[17] Petrovic S., Epstein S. L., Wallace R. J., Learning a mixture of search heuristics,
Proceedings of CP-07 Workshop on Autonomous Search, Providence, RI, 2007.

[18] Sadeh N. M., Fox M. S., Variable and value ordering heuristics for the job shop
scheduling constraint satisfaction problem, Artif. Intell., 86(1):1–41, 1996.

[19] Sturdy P., Learning good variable orderings, in F. Rossi, editor, CP, vol. 2833 of
LNCS, p. 997. Springer, 2003.

[20] Talbi E.-G., Metaheuristics: From Design to Implementation, Wiley Publishing, 2009.
[21] van Beek P., Handbook of Constraint Programming, chapter Backtracking Search Al-

gorithms, Elsevier, 2006.
[22] Vidotto A., Brown K. N., Beck J. C., Robust constraint solving using multiple

heuristics, in P. van Beek, editor, CP, vol. 3709 of Lecture Notes in Computer Science,
p. 871. Springer, 2005.

[23] Wallace R. J., Grimes D., Experimental studies of variable selection strategies based
on constraint weights, J. Algorithms, 63(1–3):114–129, 2008.

