
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 15, Number 3, 2012, 215–228

A SIMD Approach to Thread Matching
for Interleaved Multithreading

Lucian PETRICĂ
IMT Bucharest

University “Politehnica” Bucharest
Faculty of Electronics, Telecommunication

and Information Technology, DCAE Department
E-mail: lucian.petrica@dcae.pub.ro

Abstract. Interleaved multithreading processors offer improved perfor-
mance and power efficiency in a multithreading environment compared to stan-
dard CPUs by allowing multiple threads to share a single processing pipeline.
However, resource contention is a natural result of such a system and can de-
termine how well the overall thread group performs on the processor. Selecting
threads which perform well together has proven to be a difficult problem to
solve because it is computationally intensive and grows rapidly in complexity
with the number of threads in a system. We propose a vector algorithm for
this task which is able to significantly outperform a scalar implementation and
which shows improved scaling characteristics.

1. Introduction

Interleaved multithreading is an already proven technology, having been imple-
mented in Sun’s Niagara line of server processors for several years. Independent
studies have shown the interleaved approach to provide better performance at lower
power consumption for server applications, yielding significant energy savings over-
all compared to traditional server processors. The energy saving in particular has
made the interleaved processing paradigm a topic of research and development in the
embedded space [1], with Software Defined Radio as a potential application.

One significant drawback of the interleaved approach is the increased sensitivity to
thread characteristics. Whereas in a single-threaded processor thrashing of a cache or



A SIMD Approach to Thread Matching for Interleaved Multithreading 216

saturation of a multiplier affects only the running thread, in an interleaved processor
one thread can slow down other threads which run alongside it. Furthermore, threads
which behave well on their own may work badly together because they contend for
resources [5, 4]. Intuitively, a solution to this problem is to measure thread interaction
and group threads together based on the performance of the whole group. Several
papers have touched on this subject and the problem has been shown to be extremely
difficult, especially in server applications which work with tens to hundreds of threads
[6, 7, 8]. A heuristic work-around has shown good potential by estimating group
performance from single-threaded performance of each thread in the group [5].

We propose to revisit the problem of thread matching in the context of embedded
applications and parallel processing. Embedded applications are generally much less
threaded than server applications but performance requirements are just as strict.
Additionally, embedded applications for mobile devices must work within very tight
energy budgets. This has led to the adoption of interleaved multithreading in some
niche markets of embedded processing. The target platform is a wide-SIMD vector
processor. The proposed vector algorithm for thread matching is able to utilize the
platform SIMD resources to do the partitioning of threads into groups which can be
scheduled sequentially on a single processor or simultaneously on several interleaved
processors within the system.

The contribution of this paper is the first vector algorithm for solving the thread
matching problem. The paper also makes detailed analysis of the complexity of this
algorithm with regards to its input parameters, and suggests ways in which vector
processor hardware can be improved in order to provide better performance for this
particular task. The rest of the paper is structured as follows. Section 2 provides
an overview of the thread matching problem and defines the algorithm for solving it.
Section 3 describes the target platform and states size requirements of the algorithm,
then gives the actual implementation of the algorithm for the target platform. Per-
formance and profiling, as well as hardware optimizations, are presented in Section 4.
Concluding remarks and avenues for future work are presented in Section 5.

2. Thread Matching

2.1. The Concept

A software system will contain a number of application threads, which we can
think of as function calls, for simplicity. Each time the user causes a function to be
called, a new thread is created and added to the pool of existing threads. Sometimes
a particular function will have multiple instances running at the same time. This
can occur for a multitude of reasons, for example if two system users are encoding
video streams, there will be two simultaneous instances of the video codec. We can
think of threads which are instances of the same function as having the same thread
type. All threads with the same type have similar characteristics with respect to
resource usage, computational intensity, cache behaviour and other indicators. Once
we have measured these indicators for one thread of a given type, we can expect all



A SIMD Approach to Thread Matching for Interleaved Multithreading 217

other threads of the same type to behave in a similar fashion. We can measure the
computational efficiency of a thread type by measuring clocks per instruction while
the thread is running on the processor.

An interleaved processor will execute multiple threads simultaneously, a thread
group, sharing CPU cycles and processor resources among the threads. At each cycle,
a thread is selected for execution and an instruction from that thread is inserted
into the pipeline. Thus, clocks per instruction is no longer a characteristic of a single
thread, but is a feature of the thread group. While we can measure individual progress
of each thread in the group, like megabytes encoded or triangles processed, we can only
measure computational efficiency for the group as a whole. Because all thread of the
same type have the same characteristics, we can introduce the notion of type groups,
which are groups formed of threads of specific types. We can expect all instances of
the same type group to perform similarly with respect to performance and efficiency.

Thread matching is the problem of analyzing a pool of runnable threads and ar-
ranging them into type groups such that the overall predicted efficiency is maximized.
For better illustration of the problem at hand, we will exemplify thread matching using
a software defined radio processing pipeline for the WiMAX standard. The WiMAX
transmitter is a multi-stage pipeline which takes a data sequence as input and pro-
duces an encoded and modulated symbol stream which is ready for transmission over
the physical link. The pipeline includes an encoder, a mapper, an assembler and an
inverse FFT. The encoder is itself a pipelined operation and includes a Reed-Solomon
encoder, a convolutional encoder and an interleaver [3]. Overall, the processing chain
contains 11 stages, each of which does a different type of computation and is thus a
separate thread type. If we are transmitting data over several radio links at the same
time, there will be multiple instances of the WiMAX transmitter and so multiple in-
stances of each of the processing stages. Considering an example of 10 simultaneous
links, we might have as much as 110 runnable threads, and each thread belongs to
one of 11 thread types. The scheduler will then group these threads based on their
types and then commit the groups to the available processors.

2.2. Problem Statement

Given a pool of N threads, a K-interleaved processing system and an objective
function F, thread matching requires the partitioning of the thread pool into groups
of K threads such that F is minimized. The collection of groups which result from the
partitioning is called the schedule. In our particular case, F is the aggregate Clocks
Per Instruction of the schedule, obtained by averaging CPIs of all groups within a
schedule. Obviously this is a very difficult optimization problem and the number of
possible schedules P grows rapidly with N in particular.

F =
K

N

∑
CPI(gi) (1)

i 6 N

K
(2)



A SIMD Approach to Thread Matching for Interleaved Multithreading 218

P =
∏

CK
N−jK (3)

j 6 N

K
− 1 (4)

This is the reason why thread matching is unfeasible in a server environment,
where tens of threads, all of different types, can be available for scheduling at the
same time. Even in an embedded environment with fewer threads, the problem is still
a difficult one to solve generally. A more approachable problem is that of partitioning
the pool itself into windows of 2K threads each, to be scheduled separately. This
means we must solve for a pool of 2K threads, and the schedule consists of only two
thread groups, g1 and g2, which are complementary. This scheme greatly reduces the
computational complexity of the algorithm.

F =
CPI(g1) + CPI(g2)

2
(5)

P =
CK

N

2
=

CK
2K

2
=

(2K)!

4K!
(6)

Obviously, windowing the pool of threads in this way will, in most situations,
yield a worse schedule than could be obtained by partitioning the whole pool, but
the problem is now much less computationally intense and becomes approachable.
Determining the exact loss of efficiency caused by the windowing is outside the scope
of this paper.

2.3. The Objective Function

The objective of task matching is to increase the performance of the processor.
We will choose Clocks per Instruction (CPI) as the metric for processor performance,
where lower CPI is better. The algorithm assumes that the system can accommodate
up to T distinct thread types and that the performance of all type groups has been
already measured from hardware instruction and clock counters within the processor,
at the first run of each particular group. It is of special interest what is the exact
number of possible groups formed from the available T thread types, given that within
a type group there may be multiple threads of the same type. This problem is an
extension of the concept of combinations, and it can be easily proven that the number,
denoted G, is given by [7].

GK
T =

(T +K − 1)!

(T − 1)!K!
(7)

GK
T = CK

T+K−1 (8)

The particular representation of each CPI measurement is irrelevant to this al-
gorithm as long as it is achieved through a monotonically increasing transformation
from the space of actual CPI values. Strict monotonicity is not a requirement but
will prevent CPI aliasing and lead to better overall scheduling performance.



A SIMD Approach to Thread Matching for Interleaved Multithreading 219

Algorithm 1 Generic Thread Matching
for each pair of combinations of K threads

retrieve thread types

compute type group indexes

retrieve CPI

compute minimum CPI

return combination

2.4. The Algorithm

The first step is to define algorithm parameters, inputs and outputs, as presented
in Table 1. In addition to parameters K and T which have already been defined, the
algorithm takes as input two arrays. ThreadTypes is an array containing the thread
types of the threads within the runqueue, such that the first element in ThreadTypes
is the type of the first thread in the runqueue and so on. CPITable is an array of
CPI values corresponding to all possible type groups. The algorithm outputs an array
representing the resulting schedule by depth indicators in the runqueue.

Table 1. Algorithm Inputs and Outputs

Name Direction Type Size
K Input Integer 1
T Input Integer 1

ThreadTypes Input Integer Array 2K
CPITable Input Integer/Float Array GK

T

Schedule Output Integer Array 2K

The next step is to express the algorithm in its most generic form. Algorithm 1
is a pseudocode description of the algorithm. At each step we analyze a different
possible schedule, which is a permutation of the threads in the window. It must be
noted that all permutations of elements within a thread group are equivalent, because
they will be run together on the same processor. Because of this property, we are
actually looking for two complementary combinations of K threads.

Since we are interested in the types of threads, we read these from the runqueue.
In the next step we compute the indexes of the two resulting thread groups in the CPI
table and we retrieve the CPI. Finally, we find which schedule performs better than
all the others and store it. The first thing to notice is that finding the CPI for each
schedule is independent of all others. Secondly, computing the minimum CPI is a
reduction operation and requires global data interaction, and is therefore not parallel,
but it can be done efficiently in logarithmic time.

This analysis permits us to redesign the algorithm to utilize the available par-
allelism. We will assign each CPI computation to a worker process. We look to
equation (6) to give us the maximum number of workers which the algorithm can uti-
lize. Each will require a copy of algorithm inputs. Our ability to extract parallelism



A SIMD Approach to Thread Matching for Interleaved Multithreading 220

Algorithm 2 SIMD Thread Matching
send inputs to all workers

each worker must

retrieve thread types

compute type group indexes

retrieve CPI

compute minimum CPI

return combination

from the second step depends on the target platform, so this issue will be analyzed
further in Section 3. An outline of the parallel algorithm is presented in Algorithm 2.

3. Implementation

3.1. Target Platform

The SIMD algorithm will be implemented on the BEAM-Connex procesing system.
This platform has been described in more detail previously in [2, 1]. It consists of a
4-interleaved multithreading processor coupled to a 128-cell SIMD engine. Each cell
has access to a 1024-word local memory, and all cells execute the same instruction
at the same time. Cells can be enabled or disabled individually by software to allow
for conditional execution. The processor can distribute scalar data to all the cells
simultaneously, and specific reduction operations can be performed on whole arrays
of data within the SIMD engine, such as logical OR and addition, through the use of
a logarithmic tree of arithmetic logical units. Inter-cell communication is only side-
to-side. The SIMD cells operate on 16-bit integer values, which is also the width of
the local memory. A DMA engine serves the SIMD engine and can load data from
main memory into the local memories.

3.2. Mapping The Algorithm

The algorithm can be implemented directly on the target platform by having each
SIMD cell map to a different worker process. The limited SIMD processor size will
only allow direct mapping of the algorithm up to certain values of K and T. We can see
in Table 2 the maximum values of algorithm parameters which allow direct mapping to
the target platform. Memory requirements are computed for the maximum allowable
value of T and include auxiliary data.

Table 2. Allowed Parameters

K 2 3 4 5
Cells 3 10 35 126
Tmax 44 17 10 8

Memory 1007 993 746 830



A SIMD Approach to Thread Matching for Interleaved Multithreading 221

As we can see, direct mapping works for K up to 5. For larger values of K, the
we require more cells than are physically available, and the algorithm needs to be
broken up into consecutive chunks. The maximum allowable value of T is given by
the value of K and the size of the cell local memory, as expressed by equation (7).
Accommodating larger values of T is more difficult than simply paging the local
memory. Because each cell computes its own indexes in the CPI table and this index
depends on the particular configuration of threads in the runqueue, different cells
could point to different pages. Additionally, the two indexes computed by each cell
could themselves point to different memory pages. Resolving such a situation brings
a larger performance penalty than is acceptable for the task at hand and as such we
choose to disregard this possibility and treat Tmax as a hard constraint.

Fig. 1. Worker Mapped to a SIMD Cell.

3.3. Distribution of Inputs

The first step of the SIMD algorithm for thread matching is making a copy of algo-
rithm inputs in each cell. There are two ways to transfer data from main memory into
the local memory of the SIMD engine. The first method if through the distribution
network, which allows the scalar processor to copy the contents of one of its registers
into all the SIMD cells simultaneously. This way of transferring data naturally fits
this particular use case, but the data must pass through the controller data cache and
with as much as two kilobytes of data transferred in this way, it can cause thrashing
and reduce overall system performance.

The second method is programmed DMA transfers. The DMA will transfer a
region of main memory into the SIMD cells such that the first cell receives the first
two bytes of the designated main memory area, the second cell receives the next two
bytes and so on. It is not possible to transfer the same data into all the cells of the
SIMD engine unless the data is duplicated 128 times in memory and then a DMA
transfer is initiated. Generally, the main advantage of DMA transfers is that they can
occur in the background while other computation takes place, and are thus faster than
distribution network transfers. In this particular use-case there are several drawbacks
to this approach. First, data needs to be duplicated 128 times in memory. This is a
particular problem for the CPI table, which can grow to nearly 2 kilobytes. If we are
to duplicate this data we would waste nearly 256 kilobytes of main memory. Secondly,
this large amount of data would need to be transferred from main memory into the
SIMD engine every time the algorithm is executed. While the transfer time could



A SIMD Approach to Thread Matching for Interleaved Multithreading 222

be masked by other computations, of greater concern is the energy consumption of
transferring such large amounts of data over a DDR bus and across chip pins.

Table 3. Transfer Rates

Mode Native Rate Redundancy Actual Rate
DMA 16 B/cycle 128 0.125 B/cycle

Distribution 2 B/cycle 1 0.070 B/cycle

In Table 1 we can see there are two integer array inputs to the algorithm, which
have to be copied to the SIMD engine. The total amount of data to be copied as well
as transfer rates for the two transfer modes are listed in Table 3. Transfer rates over
DMA are significantly faster than over the distribution network, and it is nonblocking
which means it can overlap with other computation. The actual transfer rate of the
distribution network is lower than the native rate because it needs to be fed from the
data cache and also the transfer is executed within a loop, which adds some overhead
for index calculation and the jump itself. The optimal solution for this step of the
algorithm will most likely be determined by system considerations such as amount of
memory and the energy budget.

3.4. Generation of the Schedule

The algorithm proposes that each cell will work on different complementary com-
binations of threads, which together form a schedule. We must either generate all
the combinations in the controller and then load each cell with its corresponding
schedule, or generate the corresponding schedule within the cell itself, using the cell’s
index number as the combination’s lexicographical index. In essence, we must con-
vert a number to the combinatorial number system. A theoretical and algorithmic
overview of combinatorial number systems is given in [9]. To better illustrate the
implementation of this stage of the algorithm, we will follow an example for K=2. All
cells execute the same program at this stage so this algorithm is repeated everywhere.

We can see in Table 3 the correspondence between combinations and their lexi-
cographical index. The last columns list “reverse” combinations, which are obtained
according to equation (9). We can also observe the properties of the reverse combi-
nation sequence. Any combination element can take values smaller or equal to the
element to the left of it. From this we derive the relationship between RIndex and
RComb, which is given by equation (10).

0 ≤ i < K

0 ≤ Comb[i] < 2K

RComb[i] = 2K − 1− i− Comb[i] (9)
RIndex = CK

2K − Index− 1

RIndex = RComb[0] +
∑

j j (10)
j ≤ RComb[1]



A SIMD Approach to Thread Matching for Interleaved Multithreading 223

Table 4. Combinations for K=2

Index Comb RComb RIndex
0 (0,1) (2,2) 5
1 (0,2) (2,1) 4
2 (0,3) (2,0) 3
3 (1,2) (1,1) 2
4 (1,3) (1,0) 1
5 (2,3) (0,0) 0

Table 5. Accumulators for K=2

Level acc[1] acc[0]
0 0 0
1 1 1
2 3 2

The accumulators in Table 5 represent the terms in equation (10) for K=2. The
“level” corresponds to the value of RComb[0] and RComb[1]. We start from the top
Level and we iterate, comparing RIndex to acc[1]. If RIndex is greater or equal, then
RComb[1] equals the current level. We subtract acc[1] from RIndex, and we repeat the
process, comparing with acc[0]. We do this for all levels. In a scalar implementation
we would stop once we found all elements of RComb, but since this program is SIMD
in nature, program flow must be static so we execute for all accumulators and all
levels even though computation may be unnecessary in some cells. Once we found
RComb we can easily obtain Comb. Time complexity of schedule generation is O(K2)
and space complexity is O(K).

3.5. Retrieving Thread Types

We will now use generated complementary combinations to partition the window
into two type groups. The process is exemplified below and involves using each element
in the combination as an offset into the ThreadTypes input array and reading the
type of algorithm at that address. Implementation of this is simple, involving O(K)
operations, most of them additions, to form addresses from the base and offsets, and
local memory reads, to extract the type groups from the window. Space complexity
of thread type retrieval is O(K).

(1356) → (22345567) → (2456)

(0247) → (22345567) → (2357)

3.6. Computing CPI Indexes

This operation is the inverse of generating a combination from its lexicographical
index. At first the problem would seem different because there can be duplicate
elements in the type group, unlike a lexicographical combination, however it can
be easily shown that a type group of K elements from T types exhibits the same
properties as a combination of K elements from a group of T +K − 1. Thus, we can
handle the index computation using the same methods shown before in equation (10),
when generating the schedule. Index computation has a time complexity of O(TK)
and the same complexity O(K). Note that we must compute an index for each of the
two type groups formed from the initial schedule.



A SIMD Approach to Thread Matching for Interleaved Multithreading 224

3.7. Finding the Minimum CPI

If we have the indexes for the two type groups of each cell, we can read the CPI
values of each type group and average them, which gives us the CPI of the schedule
as a whole. At this point, we have obtained the CPIs of all schedules which can be
formed from the thread window, with each cell holding the CPI value of a different
schedule. Now we must find out which schedule performs the best, and thus has the
lowest CPI value. To do this, we will use the SIMD engine’s inter-cell communication
network to shift all CPI values into the first cell, which keeps track of the lowest CPI
value encountered and the index of the cell which contained it. After all the CPI
values have been shifted into the first cell, we know which cell has the minimum CPI,
and consequently we know which schedule is optimal for the given thread window.

4. Performance

4.1. Initial Evaluation

Performance was measured for all values of K which we were able to fit in the target
vector processor. Our benchmark was a scalar implementation of the same algorithm,
running on a single thread on the controller. Two versions of the vector algorithm
were measured, one with DMA input copying and the other utilizing the distribution
network. All runs had T set to 8 which was the largest value supported for K=5. The
measurements were carried out on a cycle-accurate simulator of the vector processor
generated from Verilog code by Verilator. The compiler used to generate code for the
algorithm was GCC 4.4.5, which was ported to the target architecture. Because of
difficulties in porting GCC to a complicated heterogeneous architecture such as the
one used here, it was unable to perform proper optimization on vector code, which is
compiled with -O0, while scalar code is compiled with -O3.

Benchmarking results are shown in Fig. 2. As would be expected, for K=2 there
is no speedup from the vector algorithm because parallelism is low with just 3 cells
used, and initialization of the vector processor, which includes input copying, takes
too long. For larger values of K, we begin to see speedup when compared to the
performance of the scalar implementation. Another point to be made is the significant
performance advantage of the DMA implementation over the one which uses the
distribution network. This is because for the DMA implementation copying the inputs
into the SIMD engine completely overlaps with schedule generation.

4.2. Optimization

Profiling results are shown in Fig. 3 for all acceptable values of K and various values
of T. We can see that input copying takes up a significant percentage of execution
time, and is dominant for larger values of T. Computation of the minimum CPI value
is dominant for smaller T and larger values of K. Further optimization will focus on
these functions.



A SIMD Approach to Thread Matching for Interleaved Multithreading 225

Fig. 2. Algorithm Performance.

Distribution DMA We have seen that a significant part of the total runtime of the
vector algorithm is spent copying the input arrays into the SIMD engine through the
distribution network. One potential solution is to use the DMA which is able to hide
the transfer behind other computation and performs significantly better. However,
the DMA solution, as it is implemented, requires duplication of the input arrays
128 times which will in most cases be unacceptable to the system designer because
of memory and power constraints. It is necessary to find a solution to utilize the
distribution network in a similar fashion to the DMA engine. We have implemented
a modification to the IO system of the SIMD engine which permits the DMA, in
addition to the controller, to serialize data into the distribution network directly when
so instructed. Hardware overhead of this solution is minimal, and it solves several
problems. First, transfers through the distribution network no longer occupy CPU
time. Second, because transfers are no longer driven by software, the full throughput
of the distribution network can be utilized. Third, the input arrays no longer pollute
the controller data cache when being transferred into the SIMD engine.

We must make a note of an intermediate solution which requires even less hard-
ware modification. We can reduce memory requirements by having the DMA engine
duplicate the data as it arrives from the memory controller in a way that will produce
the desired local memory contents in the Connex array, but in transposed form. We
then do a matrix transposition to rearrange data inside the local memories. This
solution is conceptually inferior to the Distribution DMA because it requires code to
be executed for the transposition and therefore cannot be non-blocking.



A SIMD Approach to Thread Matching for Interleaved Multithreading 226

Fig. 3. Profiling Results.



A SIMD Approach to Thread Matching for Interleaved Multithreading 227

Reduction Network Min/Max Another big contribution to algorithm runtime
is the computation of the minimum CPI, which is done serially in the SIMD array
and benefits from no parallelism. The SIMD array does however have a reduction
network which allows it to compute sums of data from all cells at once. It would
be beneficial if we could add the function of computing the minimum of the values
contained in all cells, which would allow fast computation of this particular step in
the algorithm. Implementing this change adds about 30% overhead in area for the
reduction network, and overall less than 5% of total area overhead.

Performance Reevaluation We have repeated the previous tests in order to eval-
uate the impact of the changes. The reduction network optimization yields as much as
50% increase in speedup. Adding to this the distribution network optimization takes
the overall speedup for K=5 to over 20, which is over four times the initial speedup
of the vector algorithm over the scalar one. The improved results are presented in
Fig. 4.

Fig. 4. Optimized Performance.

5. Conclusion and Future Work

We have implemented a parallel algorithm for finding the best scheduling of
threads for execution on an interleaved multithreading processor. Computation of
the algorithm is done by multiple cells of the SIMD engine in the BEAM-Connex
target platform. An initial performance evaluation was used to identify the speedup
of the SIMD implementation over the scalar implementation of the algorithm, for
various algorithm parameters. The initial evaluation included profiling data which



A SIMD Approach to Thread Matching for Interleaved Multithreading 228

allowed us to identify key areas where improvements could be made to the target
platform. These improvements were implemented and subsequent evaluations show
significant gains in speed over the initial results.

Future work will have to include a method for handling input parameters of larger
sizes than the ones discussed in this paper. Larger values of K require more cells
than are physically available and thus a method to fold the algorithm is necessary.
Larger values of T are more problematic but one solution is to represent CPI values
with less precision. Currently a CPI table entry occupies a whole 16-bit word in the
cell local memory, but if we were to reduce CPI precision to 4 bits we could hold
CPI tables four times larger. The effect of this loss of precision on the system-wide
performance of the scheduler making use of our algorithm is an interesting topic for
further research.

References
[1] Codreanu V., Hobincu R., Performance gain from data and control dependency

elimination in embedded processors, ISETC, 2010.

[2] Codreanu V., Petrică L., Hobincu R., Increasing vector processor pipeline effi-
ciency with a thread-interleaved controller, ICSTCC, 2011.

[3] Roca A., Implementation of a WiMAX simulator in Simulink, PhD Thesis, University
of Vienna, 2007.

[4] Fedorova A., Seltzer M., Small C., Nussbaum D., Throughput-oriented schedul-
ing on chip multithreading systems, Technical Report, Harvard University, 2004.

[5] Fedorova A., Seltzer M., Small C., Nussbaum D., Chip multithreading sys-
tems need a new operating system scheduler, Proceedings of the 11th workshop on ACM
SIGOPS, 2004.

[6] Snavely A., Tullsen D., Symbiotic Jobscheduling for a Simultaneous Multithreading
Machine, ASPLOS IX, November 2000.

[7] Snavely A., Tullsen D., Voelker G., Symbiotic Jobscheduling with Priorities for
a Simultaneous Multithreading Processor, SIGMETRICS, 2002.

[8] Parekh S., Eggers S., Levy H., Lo J., Thread-sensitive Scheduling for SMT Pro-
cessors, http://www.cs.washington.edu/research/smt/, 2000.

[9] Knuth D., The Art of Computer Programming, Volume 4, Fascicle 3: Generating All
Combinations and Partitions, 2005.


