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Abstract. NIST Statistical Test Suite is an important testing suite for
randomness analysis often used for formal certifications or approvals. Documen-
tation of the NIST STS gives some guidance on how to interpret results of the
NIST STS but interpretation is not clear enough or it uses just approximated
values. Moreover NIST considers data to be random if all tests are passed yet
even truly random data shows a high probability (80%) of failing at least one
NIST STS test. If data fail some tests the NIST STS recommends the analysis
of different samples. We analysed 819200 sequences (100 GB of data) produced
by a physical source of randomness (quantum random number generator) in
order to interpret results computed without analysing any additional samples.
The results indicate that data can be still considered random for the significance
level = 0.01 if they fail less than 7 NIST STS tests, 7 tests of uniformity of
p-values (100 sequences) or 10 tests of proportion of passing sequences. We have
also defined a more accurate interval of acceptable proportions computed with
a new constant (2.6 instead of 3) for which 1000 sequences can be considered
random if they fail less than 7 tests of proportion.

Key-words: NIST STS; statistical randomness testing; hypothesis testing.

1. Introduction

Randomness plays an important role in many areas of cryptography. Generating
random numbers is a difficult task and so is the quality evaluation of the generated
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data. In practice randomness assessment relies heavily on empirical tests of random-
ness. Each test examines the randomness quality of data from a specific point of view,
testing certain statistical features, such as the frequency of ones or m-bit blocks in
the data, etc. The majority of empirical randomness tests are based on statistical
hypothesis testing. Each test compares certain characteristics of data (frequency of
ones, frequency of m-bit blocks, etc.) with the expected test statistic (0.5, 27™, etc.)
that is precomputed for random infinite sequences. In this context randomness is a
probabilistic property and it can be characterized and described in terms of proba-
bility. This is due to the fact that even a good random number generator produces
sequences (for instance sequence of all ones) with characteristics significantly different
from the values expected in tests. Therefore we are not able to distinguish whether a
given sequence with “bad” characteristics was produced by a defective generator or
the sequence was produced by a good generator by chance. In the context of empirical
tests of randomness, randomness is described as the probability that a perfect random
number generator would produce sequences with the same or less randomness quality
than those exhibited by the analysed sequence. Since statistical randomness can be
tested from many points of view, tests are usually grouped into testing suites (also
called batteries) to provide a more comprehensive randomness analysis. There are
three commonly used testing suites for randomness analysis: NIST Statististical Test
Suite [1], Dieharder [3] (a novel version of the Diehard battery) and TestUO01 [4]. The
NIST STS has a special importance since it was published as a NIST standard (also
used for selecting AES) and it is used for the preparation of many formal certifications
or approvals.

Results of statistical tests of randomness are typically in the form of a p-value
which represents the probability that a perfect random number generator would pro-
duce less random sequences than the sequence being tested. Although the p-value of
a randomness test focusing on a single characteristic has a clear statistical interpre-
tation, the interpretation of the results of testing suites (including multiple tests) is
problematic. Empirical tests of randomness and their results are usually dependent
and correlated. For instance, if frequencies of ones and zeroes are biased (non-equal)
for a given sequence it is likely that frequencies of 2-bit blocks are biased too. For a
clear statistical interpretation of results (set of p-values) we need to analyse depen-
dency/correlation between results of tests applied on random data since randomness
is expressed as the probability relative to random sequences.

In our work we focus on the interpretation of the results provided by NIST STS
but the proposed approach can be used for other suites as well. Documentation of the
NIST STS gives some guidance on how to interpret results of the NIST STS tests (see
Section 4.2 of [1]) but “it is up to the tester to determine the correct interpretation
of the test results”[1]. Moreover the interpretation of results is not clear enough and
therefore “some clear guidance does need to be given in the interpretation of results”
[6]. The goal of our work is to give a correct interpretation of the results of each testing
procedure (proportion of passing sequences, uniformity of p-values) implemented in
the NIST STS. The major contribution of the paper includes the improved formula
computing an interval of acceptable proportions of passing sequences. In order to
interpret the level of randomness from the perspective of the whole test suite we
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analysed the dependency between the results of procedures for particular NIST STS
tests. We tested 100GB of data produced by a physical source of randomness [8] using
a new optimized implementation of the NIST STS [5]. The results of the dependency
analysis indicate that particular tests are interdependent and a random sequence
fails usually more tests than it can be expected for independent tests. The obtained
reference results (obtained for truly random data) can also be used for a more accurate
interpretation of results computed by the whole test suite.

This paper is organized as follows: Section 2 represents a brief introduction into
the theory behind the hypothesis testing used in empirical testing of randomness. A
reader familiar with the theory used in statistical randomness testing can skip this
section. Section 3 describes the tests included in NIST STS, their parameters and
recommended settings. The section also describes the testing strategy, i.e., what tests
to use, recommended lengths of sequences and how many sequences should be tested.
This is followed by an illustration of the results for different testing procedures. An
experienced user of the NIST STS can jump to Section 4. The main results of our
work are discussed in Section 4 and Section 5. The interpretation of results provided
by a single NIST STS test is discussed in Section 4, followed by the presentation of
a newly proposed method that allows a more accurate interval computation for the
passing sequences. Section 5 describes the interpretation of results provided by the
whole test suite considering default parameters. Section 6 is dedicated to related
work and it is discussing the dependency of the NIST STS tests and finally, Section
7 concludes the paper.

2. Empirical tests of randomness and hypothesis testing

The majority of empirical randomness tests, including the tests from the NIST
STS, are based on the statistical hypothesis testing. Hence each test is formulated to
evaluate the null hypothesis, namely that the sequence being tested is random, from
the specific point of view of that test, which can be defined by a specific statistic of
bits or blocks of bits. A test statistic is a function of the tested data and it compresses
the measured randomness quality into a single value — the observed test statistic. In
order to evaluate the test, a distribution of the test statistic must be known under
the null hypothesis (when data is expected to be random). Most of the NIST STS
tests have x? or normal distribution as their reference distribution. An observed test
statistic is usually transformed into a p-value using the reference distribution since a
p-value can be interpreted more easily. The p-value represents the probability that a
perfect random number generator would have produced a sequence less random than
the tested sequence [1].

Remark 1. The most important property of the p-values is that for arbitrary sta-
tistical tests (and not only for randomness tests) which satisfy the null hypothesis, the
p-values are uniformly distributed on the interval [0, 1). [9] This means that random
sequences processed by an arbitrary empirical test should be uniformly distributed on
[0,1). Therefore the probability that the p-values computed for a random sequence
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lies within the interval [a,b) can be expressed as:

Pr(a < p-value < b) = b —a.

In order to evaluate a test, the resulting p-value is compared with the significance
level . If the p-value is smaller/bigger than «, the hypothesis is rejected/accepted.
Since randomness is described in terms of probability we can commit two type of
errors — Type I and Type II. A type I error occurs when the true hypothesis is
rejected although the sequence was produced by a random number generator. The
probability of a Type I error is equal to the significance level a and it is chosen by the
tester. A type II error is more important for cryptographers since it represents the
probability of accepting the false hypothesis (defective generator). The probability of
a Type II error is denoted by . Probability /5 is difficult to express but « and g are
related to each other. If « is small then 8 is high and vice versa. In the hypothesis
testing, the significance level « is set to small values (less than 0.05). In cryptography,
« is commonly set to smaller values — typically 0.01. Setting v = 0.01 means that
we expect to reject the null hypothesis in less than 1% cases (for a perfect random
number generator).

3. NIST Statistical Test Suite

The NIST STS battery consists of 15 empirical tests specially designed to analyze
binary sequences (bitstreams). The tests examine randomness of data according to
various statistics of bits or statistics of blocks of bits. All NIST STS tests examine
randomness for the whole bitstream. Several tests are also able to detect local non-
randomness and these tests divide the bitstream into several typically large parts and
they compute a characteristic of bits for each part. All these partial characteristics
are then used for the computation of the test statistic. Each NIST STS test is defined
by the test statistic of one of the following three types and examines randomness of
the sequence according to:

1. bits — these tests analyse various characteristics of bits like proportion of bits,
frequency of bit change (runs) and cumulative sums,

2. m-bit blocks — these tests analyse distribution of m-bit blocks (m is typically
smaller than 30 bits) within the sequence or its parts,

3. M-bit parts — these tests analyse complex property of M-bit (M is typically
larger than 1000 bits) parts of the sequence like rank of the sequence viewed as
a matrix, spectrum of the sequence or linear complexity of the bitstream.

All tests are parametrised by n which denotes the bitlength of a binary sequence to
be tested. Several tests are also parametrised by the second parameter denoted by m
or M. Since the reference distributions of NIST STS test statistics are approximated
by asymptotic distributions (x? or normal), the tests give accurate results (p-values)
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only for certain values of their parameters. Table 1 summarizes appropriate values of
the parameters for each particular test recommended by NIST [1].

Table 1. The recommended size n of the bitstream for each particular test (Some tests are
parameterised by a second parameter m, M, respectively. The table shows meaningful
settings for the second parameter and the number of sub-tests executed by each particular

test.)

l Test # [ Test name “ n [ m or M [ # sub-tests ‘
1. Frequency n > 100 - 1
2. Frequency within a Block n > 100 20 < M < n/100 1
3. Runs n > 100 - 1
4. Longest run of ones n > 128 1
5. Rank n > 38912 - 1
6. Spectral n > 1000 - 1
7. Non-overlapping T. M. n>8m—38 2<m <21 148*
8. Overlapping T.M. n > 10° 1
9. Maurer’s Universal n > 387840 1
10. Linear complexity n > 10° 500 < M < 5000 1
11. Serial 2<m < |logyn| —2 2
12. Approximate Entropy m < |logyn| —5 1
13. Cumulative sums n > 100 2
14. Random Excursions n > 10° 8
15. Random Excursions Variant n > 10° 18

Several of the NIST STS tests are performed in more variants, i.e., they execute
several sub-tests and examine more properties of the sequence of the same type.
For instance, the Cumulative sum test examines a sequence according to forward
and backward cumulative sum. Table 1 also summarizes the number of sub-tests
performed by each particular test. The Non-overlapping template matching test is
marked by an asterisk since the number of its sub-tests is not fixed and depends on
the value chosen for the parameter m (the number 148 mentioned in the Table 1
corresponds to the default value of the parameter m = 9).

3.1. Testing

NIST STS allows the analysis of an input file as one block (sequence) or to divide
it into sequences of a fixed length n, where n is set using the command line. The
user has to choose parameters that are listed here in their order of appearance in the
text-based user interface:

1. file for the analysis — user can choose his own file or data can be generated
by one of the predefined pseudorandom number generators (Blum-Blum-Shub,
several congruential generators, modular exponentiation and others);

2. tests — what test/tests should be applied to data;

3. values for the second parameter (m or M) for several tests — Block frequency
(128), Non-overlapping template matching (9), Overlapping template matching
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(9), Approximate entrophy (10), Serial (16), Linear Complexity (500) (default
values are listed in brackets behind each test);

4. number of bitstreams to be processed;

5. file format — ASCII (sequence of ASCII 0’s and 1’s) or binary format (each byte
of the file contains 8 bits of the sequence).

Which tests should be chosen for randomness analysis is a difficult question. It de-
pends on the considered generator (data), its application domain and the defects in
randomness which are not acceptable. Without any information about the data to be
analysed, all NIST STS tests should be used for the randomness analysis. In order
to apply all tests, the parameter n (bitlength of the sequences) should be greater
than 100000 (see Table 1). The NIST STS documentation recommends that at least
k = a~! = 100 sequences should be tested. This is also an appropriate value for the
uniformity test of p-values (at least 55 sequences must be processed). Since p-values
are processed by the NIST STS using some approximation the more sequences are
tested the more accurate results will be obtained. NIST suggests that a number of
1000 or more sequences should be tested [1].

3.2. Results

All tests when applied to one sequence result in one or more p-values (the exact
number depends on the number of sub-tests, see Table 1). It should be noted that
some tests — Runs, Random Excursions and Random Excursions Variant, are not
always applicable. These tests are applied only if the sequence meets certain criteria
(Frequency test is passed, number of cycles is greater than 500). If a test is not
applicable the resulting p-value is set to 0.

All NIST STS tests produce several files with results. Each test produces its own
result.txt file that stores all resulted p-values computed by the test (or sub-tests) for
all tested sequences. When a test executes sub-tests it also produces files datai.txt
that store p-values computed by the i*" sub-test. The file result.txt stores p-values
in the natural order, i.e., the first p-value from datal.txt, the first p-value from the
data2.txt, etc.

The NIST STS processes all results (p-values) from all result.txt files into the
final file finalAnalysisReport.txt. This file stores the “final” table that summa-
rizes all results of all chosen tests. The following Table 2 illustrates the table from
the finalAnalysisReport.txt file that was obtained after processing 1000 binary
sequences each consisting of 10° bits.

Each row of Table 2 corresponds to one test (or a sub-test). Values in the columns
C1,C2,--- ,C10 represent number of p-values that fall within intervals [0.0,0.1),
[0.1,0.2),---,[0.9,1.0), i.e., 108 of the p-values computed by the Frequency test fall
within interval [0.1,0.2). Values in the P-value column represent the results for uni-
formity testing of p-values computed for a given test (see Section 4.2). Value in the
column Proportion represents proportion of sequences that pass a given test. In the
first row (Frequency) we can see that the proportion of sequences that pass the Fre-
quency test is 0.991, i.e., 991 out of 1000 sequences passed. Results which NIST
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interprets as non-randomness of the data are marked by an asterisk. However these
marked results just indicate potential problems with data. Statistical interpretation
of all result is discussed in the next two sections.

Table 2. Partial results from the finalAnalysisReport.txt file produced by the NIST
STS after processing of 1000 binary sequences produced by a biased random number

generator
ClL|C2|C3|C4|C5|C6|CT7|C8|C9|C10| P-value |Proportion Test
99 [108| 91 [105|109|104| 92 |101| 93 | 98 | 0.920383 0.9910 Frequency

90 | 89 |103|101|111|105|100| 94 [108| 99 | 0.853049 0.9970 BlockFrequency
90 |114| 93 [114| 96 | 90 | 102| 96 | 101 | 104 | 0.643366 0.9910 CumulativeSums
103 | 91 |101| 99 |113| 97 | 87 | 88 |114| 107 | 0.506194 0.9930 CumulativeSums
41 | 44 | 44 | 45 | 50 |568| 51 | 48 | 51 | 58 |0.000000* 0.9970 NonOverlapping
41 | 44 | 49 | 46 | 47 |589| 54 | 41 | 51 | 38 |0.000000* | 1.0000%* NonOverlapping
99 [107| 99 |113| 94 [100|110| 87 | 91 | 100 | 0.733899 0.9940 Serial
104116103 | 96 | 94 | 95 | 101|102 | 84 | 105 | 0.695200 0.9890 Serial

97 1107|101 |111{115| 90 |100| 94 | 98 | 87 | 0.622546 0.9900 | LinearComplexity

4. Interpretation of a single test result

There are several ways to interpret a set of p-values computed by an empirical
test of randomness. NIST adopted the following two ways:

1. The examination of the proportion of sequences that pass a certain statistical
test — relative number of sequences passing the test should lie within a certain
interval.

2. The uniformity testing of p-values — p-values computed for random sequences
should be uniformly distributed on the interval [0, 1). Uniformity of p-values can
be tested again using statistical tests (uniformity of p-values forms a hypothesis).

The NIST STS also includes analytical routines that analyse the uniformity and the
proportion of the computed p-values for each particular test (sub-test).
The following types of results should be interpreted:

1. set of p-values,

2. proportions of sequences passing a given test (p-values greater than significance
level o = 0.01),

3. p-values resulted from the uniformity test of p-values computed for a test.

The NIST STS documentation describes a way to interpret the results of a single
empirical test and includes the computed values into the final results (marked values
indicate non-randomness). However, several improvements and corrections can be
introduced. When a single sequence is tested, the computed p-value can be interpreted
simply as: “the probability that a perfect random number generator would have
produced a sequence less random than the sequence that was tested” [1]. Values in
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the columns P-value and Proportion are meaningful only for an appropriate (NIST
recommends at least 100) number of tested sequences.

4.1. Proportion of sequences passing a test

The probability that a random sequence passes a given test is equal to the com-
plement of the significance level 1 —a. For multiple random sequences, the proportion
of sequences that pass a given test is usually different but close to (1 — «). The pro-
portion of passing sequences should fall into a certain interval around (1 — «) with a
high probability. The NIST STS computes the interval of acceptable proportions and
saves it into the finalAnalysisReport.txt file. The interval is computed using the
significance level o and the number of tested sequences k as:

(k@i:ﬂ/%, (1)

where k is the number of tested sequences. The acceptable proportion of passing
sequences should fall within the interval 0.99 4+ 0.0094392 for the significance level
a = 0.01 and the number of tested sequences k = 1000. In Table 2 the value in the
Proportion column for the Frequency test (0.991) lies within the interval of acceptable
proportions. This means that 991 out of 1000 tested sequences passed the Frequency
test (991 of p-values are greater than the significance level « = 0.01) and therefore
the data can be considered random according to the Frequency test. On the other
hand, the proportion (1.0) for two considered Non-overlapping sub-tests is outside
the acceptable region [0.9805607,0.9994392], therefore the data can be considered
non-random — and values are marked by an asterisk.

Improvements to the computation of the acceptable region of passing se-
quences: Formula (1) is based on the approximation of the binomial distribution [1]
which is reasonably accurate for many tested sequences (k > 1000). The probability
that the proportion of passing random sequences falls into the computed interval is
99.73%. It corresponds to the probability 0.27% of the Type I error (see [11]). Hence
we will get the probability of the Type I error closer to 1% if the interval of acceptable
proportion is computed by the following formula:

0.01 0.9
0.99 2.6,/ + 2)

The above formula gives accurate results for large k [11]. For a small number of tested
sequences (k) the tester should use the formula (3) based on the binomial distribution
which is exact, not an approximation as formulas (1 or 2). The probability that a
random sequence passes given test is equal to 1 — a = 0.99. The probability that
k1 out of k random sequences pass a test has a binomial distribution and it can be

computed! as:
k k
(kl)(l —a)hafh = (k1)0.99’f10.01’“—’f1. (3)

'When using the online Wolfram Alfa Engine [10] type sum Binomialfk,i]0.99 ~i*0.01"(k-i), k=
k-1 to k_2.
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The distribution of probabilities (for random data) is “symmetric” about the mean
1 — « and therefore the interval has 1 — « as its center. The probability that the
number of passing sequences fall within the interval [k, ko] can be computed as

ko
Pr(ky/k < proportion < ky/k) = Z (T) 0.99°0.01%%,

i=k1
We get Pr({ < proportion < 25) = 0.9966 (corresponds to 0.34% Type I error)
for the interval computed by formula (1) used in the NIST STS. For the interval
[0.9805,0.9994] computed by the newly proposed formula (2) we get the probability
Pr(332 < proportion < %) = 0.9926 (Type I error equal to 0.74%). In order to
obtain a probability of the Type I error closer to 1% it usually suffices to change
one of the bounds ki, ks by 1. For £k = 1000 the most appropriate bounds are k; =
982, ko = 997 for which we get Pr(% < proportion < %) = 0.9904 with the
corresponding 0.96% probability of the Type I error which is quite close to 1% given

by the significance level a.

4.2. Uniformity of p-values

The p-values computed by a singe test should be uniformly distributed on the
interval [0,1). Hence, the uniformity of p-values forms a hypothesis and it can be
tested by a statistical test. The NIST uses one sample 2 test to assess the uniformity
of p-values. x? test measures whether the observed discrete distribution (histogram)
of some feature follows the expected distribution. In the NIST STS, the interval
[0,1) is divided into 10 sub-intervals [i/10, (i + 1)/10) and x? test checks whether
the number of p-values for each sub-interval (C; columns of Table 2) is close to k/10
(where k denotes number of p-values/tested sequences). For the first considered Non-
overlapping sub-test, a number of 568 (C6 column of Table 2) p-values fall into the
interval [0.5,0.6). The observed number 568 is quite different from the expected 100
and therefore the uniformity test fails.

Remark 2. The x? test works well only for k£/10 greater than 5.5. Therefore the
number of tested sequences should be at least 55 (k > 55) to get a meaningful result
for the uniformity test.

The value in the P-value column of the final table (Table 2) represents the results
(p-value) of the uniformity test of p-values. A computed small p-value indicates
a problem of the generator, but it is hard to identify a concrete weakness. The
NIST STS documentation recommends a very small value for the significance level
a = 0.0001 for the uniformity test, i.e., p-values are considered as non-uniform if a
p-value from the P-value column is smaller than 0.0001. The p-values computed by
the first considered Non-overlapping template matching test are non-uniform on [0,1)
since the resulted uniformity p-value 0 is smaller than o = 0.0001. A very small value
of the significance level o recommended by NIST implies a large probability of the
Type II error (8 - acceptance of bad generator). From the practical point of view a
small 8 is more important than a small . On the other hand the non-uniformity of
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p-values usually indicates that there can be a problem. We believe a less conservative
(0.001 or 0.01) value of the significance level o would be more appropriate for testing
the uniformity of p-values.

5. Interpretation of multiple tests

NIST suggests to consider data to be random if and only if the sequence/sequences
pass all testing procedures (uniformity test of p-values, test of the proportion of
passing sequences). This is slightly misleading since the probability that a sequence
fails at least one of the used procedures increases with the increasing number of
used procedures/tests (sub-tests). At the same time, the NIST STS recommends the
analysis of different samples produced by the same generator.

Remark 3. 1If the tested sequence(s) fail one or more randomness testing proce-
dures “additional numerical experiments should be conducted on different samples of
the generator to determine whether the phenomenon was a statistical anomaly or a
clear evidence of non-randomness” [1].

Overall a number of 188 tests (sub-tests) are applied to a given sequence in the
default settings of the NIST STS. The probability that a given sequence passes ex-
actly k1 out of k tests (NIST STS test, uniformity test, test of proportion) all with
a = 1% has again the binomial distribution and can be computed using the above
mentioned formula (3). For instance, the probability that a given sequence passes 188
independent tests is equal to 0.99'% = 0.15 = 15%. However, due to interdependency
of the NIST STS tests the probability that given sequence passes all NIST STS tests
is higher than the expected 15%.

In order to evaluate the randomness of data we have measured the probability
that a random sequence fails ¢ or more tests for each testing procedure (proportion
of passing sequences, uniformity test). These computed probabilities can be used
to compute a p-value for the whole test suite — probability that a perfect random
number generator would produce sequences with results (set of p-values) worse than
the results computed for the given sequence. We analysed the results of all 188 NIST
STS tests/sub-tests with their default settings. We have analysed 100 GB of data
(downloaded from [8]) produced by a physical source of randomness. The randomness
analysis was performed by an optimised implementation of the NIST STS [5] which
is overall 30x faster than the original implementation. In order to use all the tests
the bitlength of each sequence n was set to 100000 bits which corresponds to 819200
analysed sequences.

5.1. Considering only one sequence

In this section we focus on the probability Pr(i) that a random sequence fails
(the p-value of the NIST STS tests is smaller than o = 1%) ¢ tests for a given
procedure, and illustrate how to use these probabilities to evaluate the randomness of
the sequence. The Random Excursions test and the Random Excursions Variant test
and their sub-tests are not always applicable. Random Excursions test and Random
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Excursions Variant are either both (including all the sub-tests) applicable or non-
applicable. Therefore 188 tests or 162(= 188 — 8 — 18) tests are applicable. We
computed two probabilities:

1. The probability Pr(i,188) that a random sequence fails exactly ¢ NIST STS
tests. Probabilities are computed for 505557 (out of all 819200) sequences for
which all NIST STS are applicable.

2. The probability Pr(i,162) that a random sequence fails exactly ¢ NIST STS
tests (except the Random Excursions test and the Random Excursions Variant
test). Probabilities are computed for the remaining 313643 (= 819200 — 505557)
sequences for which the Random Excursions (Variant) tests are not applicable.

Table 3 shows the probabilities (expected theoretical and observed) that a random
sequence fails exactly ¢ NIST STS tests. Expected probabilities are computed for
k = 188 independent tests using the following formula:(’;)0.99(k’i)0.01i. For practical
reasons the table also shows the cumulative probability that a random sequence fails
1 or more NIST STS tests.

Table 3. Percentage probability that a random sequence fails exactly ¢ out of all 188 NIST
STS tests (default setting) or out of 162 NIST STS tests (when the Random Excursions
(Variant) tests are not applicable) ( Pr(i,188) is computed for sequences for which all
NIST STS tests are applicable. Pr(i, 162) is computed for sequences for which Random
Excursions (Variant) tests are not applicable. Cumulative probability represents the
corresponding probability that a random sequence fails 7 or more empirical tests.)

number of failed tests ()| 0 1 2 3 4 |56 |7 |89 10|11
expected 15.1(28.7127.1117.0| 7.9 [2.9/0.9(0.2/0.1{0.0(0.0|0.0
Pr(i,188) 19.4(28.9123.8{14.3| 7.2 [3.3|/1.5/0.7/0.3/0.2/0.1|0.1
cumulative 100 | 80.6 | 51.7|28.0|13.6|6.4]3.0/1.6{0.8/0.5|0.3]0.1

Pr(i, 162) 20.0{29.5|23.8|14.1{ 6.9 |{3.1|1.3|/0.6[/0.3/0.1]{0.1| O
cumulative 100 | 80.0|50.4126.6|12.5|5.6[2.5(/1.2{0.6[0.3|0.2]0.1

The computed cumulative probabilities from Table 3 can be simply used for assess-
ing randomness of the given sequence S. If the sequence S is tested using the NIST
STS with the default settings, S fails 5 tests and the Random Excursions (Variant)
tests are applicable (i.e, all NIST STS tests are applicable) then 6.4% of random
sequences are “equally or less random” than the sequence. Since the corresponding
value 6.4% is greater than the significance level & = 1% the sequence S can be consid-
ered random. From the Table 3 a sequence can be considered non-random for o = 1%
if it fails 8 or more NIST STS tests.

5.2. Considering multiple sequences

In this section we discuss the most common situation in randomness testing where
many sequences are tested by all NIST STS tests. An interpretation of all computed
p-values, 188 p-values of uniformity tests and 188 proportions of passing sequences is
discussed.
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Set of p-values: We can use probabilities computed for each particular sequence
(Table 3 from the previous section 5.1) to interpret a set of p-values computed by
multiple tests for multiple sequences. In order to describe the randomness for k
tested sequences Si,---, Sy it is sufficient to compute the product of probabilities
p; from Table 3 corresponding to each particular sequence S;. Let us consider the
randomness assessment of data consisting of two sequences Si,S3. If the sequence
Sy fails 2 tests and the Random Excursions (Variant) tests are not applicable, then
for the corresponding probability we have p; = 0.504. If the sequence Sy fails 1 test
and all tests are applicable then the corresponding probability is equal to po = 0.806.
The probability (p-value for the whole test suite) that two random sequences are less
random than S7, S5 can be computed as p = p1.p2 = 0.504 % 0.806 = 0.4. Therefore
data (sequences S1,S2) can be considered random for o = 0.01 since p > a.

Uniformity of p-values: In order to evaluate randomness of many sequences for all
the NIST ST tests we computed probabilities that random sequences fail ¢ (or more)
uniformity tests for p-values computed by all 188 NIST STS tests. The probabilities
are computed from 8192= 819200/100 sets of sequences each consisting of k = 100
sequences. It should be noted that the non-applicable Random Excursions (Variant)
tests are not an issue since uniformity of p-values computed by the Random Excursions
(Variant) tests is examined for a smaller set (60 in average) of p-values. Table 4 shows
the observed probability that a set of 100 random sequences fail exactly ¢ uniformity
tests. Table 4 also shows the cumulative probability that 100 sequences fail ¢ or more
uniformity tests for different significance levels a = 1%, 0.1% and 0.01% recommended
by NIST.

Table 4. Percentage probability that 100 random sequences fail exactly ¢ out of 188
uniformity tests used for each particular NIST STS test (o = 1%) (Cumulative
probabilities represent probability that 100 random sequences fail ¢ or more uniformity
tests for different significance levels a = 1%,0.1%, 0.01%.)

number of failed tests (i) | 0 1 2 3 4 |56 |7 8 9
expected 15.1(28.7|27.1{17.0| 7.9 |2.9](09| 02 | 0.1 | O
observed 11.3124.8(26.6(19.0/10.84.8[1.8| 0.5 | 0.2 | 0.1

cumulative (a = 1%) 100 | 88.7(63.9(37.3|18.3|7.5|2.7|0.85|0.33|0.09
cumulative (o =0.1%) | 100 |21.8| 3.1 | 0 0 |]0|0] O 0 0
cumulative (o = 0.01%) | 100 | 3.3 |0.12| 0 0]0]0] O 0 0

The computed probabilities can be used for assessing randomness of 100 sequences
as follows: Let us assume that 100 sequences are analysed by the NIST STS in the
default settings and sequences fail 5 uniformity tests (5 p-values in the P-value column
of the final table are marked by asterisk). For the @ = 0.01% recommended by
NIST, the corresponding probability value from Table 4 is 0%. Since the probability
is smaller than o = 0.01% the data can be considered non-random according to the
uniformity test procedure. On the other hand, the data can be considered random
for the significance level a = 1% since 7.5% > a.

Proportion of sequences passing a test: We have also computed the probability
that a set of k sequences fails the test of proportion of passing sequences. We have
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considered a set of 100 or 1000 sequences (k = 100 or k = 1000). In order to get
more accurate results we have also tested k¥ = 1000 with the interval of acceptable
proportions computed using the new formula (2) (constant 3 is replaced by a more
accurate value 2.6). Table 5 shows the expected and observed probability that 100
respectively 1000 random sequences fail ¢ (or more) tests of proportion of passing
sequences. The results were analysed for all 188 NIST STS tests. The non-applicable
Random Excursions (Variant) tests are not an issue, since a proportion of passing
sequences is computed from a smaller set (60 or 600 in average) of p-values computed
for sequences for which the Random Excursions (Variant) tests are applicable.

Table 5. Percentage probability that random sequence fails exactly i out of 188 uniformity
tests used for each particular NIST STS test (o« = 1%) (Cumulative probability represents
percentage probability that a random sequence fails ¢ or more NIST STS tests for different
number of tested sequences k = 100, 1000 and interval of acceptable proportions given by
constants const = 3 or const = 2.6.)

number of failed| 0 1 2 3 4 5 6 | 7|89 |10]11]12]|13

tests (4)
expected 15.1(28.7|27.1117.0(79|29|09 (02|01 0| 0] 0] 0]O0
observed 46.9(33.7114.71 43 | 05| 0 010[0|0]010]0]|O0

cumulative £ = 103,] 100 [ 53.1]19.4] 4.8 [ 0.5 | 0 0 0Ojo0j0j0O]O0O]O0O]O
const =3
cumulative £ = 10%,] 100 [95.9]84.3]66.3]45.6]28.1]15.6/8.2[4.1]1.8/0.8[0.3][0.2]0.1
const =3
cumulative £ = 103,] 100 [ 79.2148.6[25.2] 9.4 | 32 1.2 ]0o6]l01l 0[O0 0] 0O
const = 2.6

Computed cumulative probabilities can be used for assessing the randomness of
1000 sequences as follows: Let us assume that k=1000 sequences fail 4 tests of propor-
tions (4 marked values in the Proportion column of a final table). The corresponding
cumulative probability from Table 5 is equal to 0.5%. The probability is smaller than
the significance level & = 1% and therefore sequences can be considered non-random.
On the other hand, computing the interval more accurately, using the 2.6 value for
the constant, sequences can be considered random since the probability that 1000
random sequences fail 4 or more proportion tests is 9.4% > 1%.

6. Related work

In order to eliminate redundant tests NIST analysed the dependency of p-values
using principal component analysis. The results were “that there is no large re-
dundancy among tests”. However, analyzing p-values, which are not linear, using
principal component analysis assuming linearity, seems awkward, as authors in the
paper [6] have also observed.

According to our best knowledge, there is only one paper [7] focused on depen-
dency of NIST STS tests. The authors of [7] measured only the interdependency of
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the NIST STS tests (probability that a random sequence fails two tests simultane-
ously). Moreover, quality of random data is essential for the measurement of the
interdependency of tests, but authors did not specify how data were generated. They
also skipped several NIST STS tests. In our approach we are focusing on different
aspect of the dependency. In order to evaluate randomness of a given sequence we
computed the probability that a random sequence fails more than a given number of
tests (empirical test, uniformity tests, test of proportion).

7. Conclusion

In this paper we focused on the interpretation of results of the NIST STS in its
default settings. The NIST STS suggests to consider data to be random if all tests are
passed — yet even truly random data shows a high probability (80%) of failing at least
one NIST STS test. If data fail some tests the NIST STS recommends the analysis
of additional samples. We analysed 819200 sequences of 1000000 bits produced by
a physical source of randomness (quantum random number generator) in order to
interpret results computed without analysing any additional samples.

We have computed the reference probabilities that random sequences fail ¢ or more
tests for each particular testing procedure (NIST STS tests, uniformity test, propor-
tion of passing sequences). Computed probabilities reflect the dependency between
p-values computed by the NIST STS tests, p-values of uniformity tests and propor-
tions of passing sequences. We also improved the formula computing the interval of
acceptable proportions of passing sequences.

Computed reference cumulative probabilities indicate that a single sequence can
be considered non-random if it fails (p-values are smaller than o = 1%) 7 or more
NIST STS tests. According to the uniformity test, 100 sequences can be considered
non-random if they fail 7 uniformity tests (o« = 1%) or 3 uniformity tests (for o = 0.1%
or a = 0.01%). According to the test of proportions, 1000 (100) sequences can be
considered non-random if they fail 4 (10) tests of proportion. We have also redefined
a more accurate interval of acceptable proportions computed with a more accurate
constant (2.6 instead of 3). Using this interval, 1000 sequences can be considered
non-random if they fail 7 or more test of proportions. For this interval, a tester has to
check by hand whether the proportion of passing sequences is out of the new interval
of acceptable proportions since results in the final table are marked only for the old
one. All previous results indicate that even random sequences often fail one or more
tests. However, it is still necessary to examine additional samples in order to evaluate
whether failed tests show a statistical anomaly or a clear evidence of non-randomness.
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