

Subsolidus Phase Equilibria in the SnO2-ZnO binary System

S. Mihaiu¹, Al. Toader¹, I. Atkinson¹, O.Mocioiu¹, M.Voicescu¹, R. Plugaru² and M.Zaharescu¹ ¹Institute of Physical Chemistry "Ilie Murgulescu" Bucharest, 202 Splaiul Independentei, 060021 Romania ²R&D in Microtechnologies, PO Box. 38-160, 023573, Bucharest, Romania

The present work deals with phase formation studies in the $m SnO_2$ -ZnO binary system over the whole concentration range in the m 600- $m 1500^{o}C$ temperature domain.

ABSTRACT

The binary and ternary oxide compounds belonging to the SnO2-ZnO system are very interesting materials for the applications as varistors, electrodes, catalysts and gas and chemical sensors.

The present work deals to investigate the high-temperature interactions of the samples with initial compositions expressed as (1-x) SnO₂-xZnO in order to established the concentration range of the obtaining the phases of interest and thermal stability of them.

XRD, FT-IR Spectroscopy were use to established the formation mechanism of the phases.

Morphological characteristics were investigated by Scanning electron microscopy (SEM) and ceramic properties measurements of apparent porosity, shrinkage and density.

In the 1000-1500 °C temperature range the initial SnO₂-ZnO

binary system turn into SnO₂ - Zn₂SnO₄ and Zn₂SnO₄-ZnO

RESULTS

Initial composition of the studied samples

40 10 10 27 27 27	CHARLEST POR	IN WEST POLICY	100 100 100	ALTERNATION OF THE PARTY.		COUNTY LEVEL SEPTE	Mary Artist to	PERMIT PUR	10 March 2012	THE R. P. LEWIS CO., LANSING	The ball of the ba	12 12 12 12 12	A.11124-074	3.51 (TEAT OF A SERVICE AS	NEW 2015	A VALUE OF TAXABLE PARTY.
Sample	1SZO	2SZO	3SZO	4SZO	5SZO	6SZO	7SZO	8SZO	9SZO	10SZO	11SZO	12SZO	13SZO	14SZO	15SZO	16SZO
SnO ₂ % mol	100	97.5	95	90	80	70	60	50	40	33	30	20	10	5	2.5	-
ZnO % mol	-	2.5	5	10	20	30	40	50	60	67	70	80	90	95	97.5	100

Phase composition of the studied

Sample	1SZ	2SZO	3SZO	4SZO	5SZO	6SZO	7SZO	samp 8SZO	9SZO	10SZO	11SZO	12SZO	13SZO	14SZO	15SZO	16SZO
T (0C)																
600	R*	R, W*	R,W	R, W	R, W	R, W	R, W	R, W	R, W	R, W	R, W	R, W	R, W	R, W	R, W	W
1000	R	R, IS, W*	R, IS, W	R, IS, W	R, IS, W	R, IS, W	R, IS, W	R, IS	R, IS	IS, R, W	IS, W, R	IS, W,	IS, W,	IS, W,	IS, W, R	W
1100	R	R,IS	R, IS	R, IS	R, IS	R, IS	R, IS	R, IS	R, IS	IS	IS, W	IS, W	IS, W	IS, W	IS, W	W
1300	R	R, IS	R, IS	R, IS	R, IS	R, IS	R, IS	R, IS	R, IS	IS	IS, W	IS, W	IS, W	IS, W	IS, W	W

R-Rutile; W- Wurtzhite; IS- Inverse Spinel

Preparation of the samples

Starting materials

- SnO2 (Merck) reagent grade
- ZnO (Fluka) reagent grade

were obtained by pressing at 100 MPa.

Thermal treatment:

•Non-isothermal conditions up to 1500°C (heating rate

•Isothermal conditions at 600°C - 1500°C; 2 or 10

Methods of characterization

Structural Characterization:

• XRD analysis was performed with a DRON UM1 diffractomete chromatized using Co Ko 2θ equipped a graphite mor

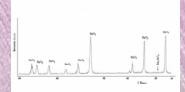
radiation $(\lambda = 1.79021 \text{ Å})$

• The fluorescence spectra (emission) were th Perkin Elmer 204 spectrofluorimeter (having a e lamp 150 W), interfaced to a computer, persestabilized reading time of the data. Usually the ti tween two measurements is 550 ms.

Morphological characterization:

- Linear shrinkage
- Apparent poros

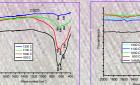
The SnO2 and ZnO with grain size belong 60 µm and composition presented in Table 1 were wet homogenized in the agate mortar absolute ethanol.


Cylindrical samples with Φ=10 mm and h=2-3 mm

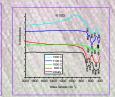
50C/minute).

hours plateau.

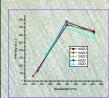
FT-IR spectroscopy was made with a Nicratus in 400-1400 cm⁻¹ domain.

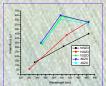

- Scanning electron microscopy

XRD pattern of the 2SZO


- At 1000 °C the following reaction take place: $SnO_2 + 2ZnO Zn_2SnO_4$ compound even if for 2 SZO sample (2.5% mol ZnO) was observed by X-ray diffraction analysis. At temperatures ≥ 1000 °C for the 10SZO sample only Zn_2SnO_4 phase was
- At 1300°C following reactions take place
- $ZnO \rightarrow Zn_{Sn} + V_{\ddot{o}} + O_{0x}$ $V_{\ddot{o}} + e' \rightarrow V_{0}$
- $V_{0x} \rightarrow V_{0} + e'$

FT-IR Spectroscopy


FT-IR Spectroscopy of the 8SZO sample thermally treated at different temperatures

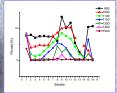

For the sample 2SZO at 1300°C IR flattening of IR characteristics bands can be seen. That is due to the SnO_{2ss} solid solutions formation.

For the sample 8SZO and 10SZO at 1000°C the appearance of the new IR band at 572 cm-1 can be observed. This band could be assigned to the Sn-O-Zn bonding in the Zn2SnO4 inverse spinel.

Fluorescence Spectroscopy

λ_{em,} and relative fluorescence intensities, I_r of the initial Sn-Zn

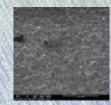
The fluorescence emission spectra of 10 SZO sample thermally treated a different temperatures; $\lambda_{ex} = 270$ nm


present similar relative fluorescence

intensities.


In the case of the samples thermally treated at 1000°C smaller relative fluorescence intensities are observed for

Huorescence intensities are observed for the samples 158ZO and 168ZO (with highest ZnO content). For the samples thermally treated at 1100°C the fluorescence emission quenched due to the formation of the Zn₂SnO₄ compound probably.


Morphological characterization

Apparent porosity of the samples

shrinkage of the

SEM image of the 2SZO sample

CONCLUSIONS

tion range in the 600-1500°C temperature domain was studied.

the SnO₂-ZnO binary system in the whole co SnO₄ compound with inverse spinel structure ned. The coordination change of the Zn ions due to the formation of the inverse spinel was

- d in both riche SnO2 and ZnO domains. mixtures belonging to t epting pure SnO₂ present fluorescence emission in UV range as well as the ceramics obtained after
- earment at 1000 °C. The coordination change of Zn ions through formation of Zn2SnO4 inverse spinel quenched fluorescence emission.

Acknowledgments

The financial support of Romanian National Manag Management Program, PN II type Project under the contract no. D11 048/18.09-2007