Strain relaxation and superconductivity in electron-doped $Sr_{0.85}La_{0.15}CuO_2$ thin films grown by laser ablation

Victor Leca^{1,2}, Jochen Tomaschko², Mihai Danila¹, Di Wang³, Wim A. Bik⁴, Reinhold Kleiner², and Dieter Kölle²

¹National Institute for Research and Development in Microtechnologies, Bucharest, Romania ²Center for Collective Quantum Phenomena in LISA+, University of Tübingen, Germany ³Karlsruhe Institute for Technology, Institute for Nanotechnology, Karlsruhe, Germany ⁴AccTec BV, TN/Cyclotrongebouw, Technical University of Eindhoven, The Netherlands

Outline

Motivation behind this work

 $Sr_{1-x}La_{x}CuO_{2}$ (x=0.15) thin films:

- Pulsed Laser Deposition growth by the reduction method on different substrates (SrTiO₃/BaTiO₃, KTaO₃, and DyScO₃);
- microstructural studies and epitaxial strain evolution;
- short overview of the results on the superconducting order parameter symmetry studies.

Conclusions

Motivation of the work

1. Symmetry of the superconducting order parameter in the electrondoped Sr_{1-x}La_xCuO₂ compounds (SLCO, x=0.10-0.175) from:

i. phase sensitive tunneling experiments based on $0/\pi$ -SQUIDs (on SrTiO₃ tetracrystals)

Tomaschko et al., PRB 86, 094509 (2012)

ii. tunneling studies across Josephson contacts between SLCO and a low-T_c superconductors (Nb), with known s-wave symmetry

2. Studies on SLCO Josephson junctions:

i. grain-boundary junctions based on c-axis oriented SLCO films *Tomaschko et al., PRB 84, 0214507 (2011)*ii. ramp type SLCO/Me/Nb (Me=Ag, Au) junctions
iii. planar c-axis SLCO/Au/Nb tunnel junctions *Tomaschko et al., PRB 84, 064521 (2011)*

3. Better understanding of the correlation between strain, microstructure, and electrical transport properties in SLCO thin films grown by PLD on different substrates (SrTiO₃, KTaO₃, and DyScO₃)

> Leca et al., APL 89, 92504 (2006); Appl. Phys. A 93, 779 (2008) Tomaschko et al., PRB 85, 024519 (2012)

The Sr_{1-x}La_xCuO₂ compounds

ICSM 2014 29.04.2014 pg. 03/14

The Sr_{1-x}La_xCuO₂ compounds

ICSM 2014 29.04.2014 pg. 04/14

Requirements for Sr_{1-x}La_xCuO₂-based junctions

Single phase, c-axis oriented films required

Single phase, c-axis oriented SLCO films, with smooth surface and sharp oxide-metal interface required

$Sr_{1-x}La_{x}CuO_{2}$ (x \approx 0.15) growth parameters

On (001) KTaO₃ and (110) DyScO₃ <u>Sr_{1-x}La_xCuO₂ (SLCO)</u>:

 $T_d = 500-575 \ ^{\circ}C$ $P_d = 0.20-0.40 \ mbar O_2$ Post-deposition vacuum annealing (reduction) at T_d and $10^{-7} \ mbar$: - 10-20 min (KTaO₃ case) - 20-30 min (DyScO₃ case)

T_c: up to 24 K, on KTaO₃ up to 18 K, on DyScO₃

Film's composition ($x_t=0.15$ target), from RBS data:

- $x_f = 0.145$, film grown on KTaO₃ - $x_f = 0.135$, film grown on DyScO₃

 $-x_{f} = 0.135$, mm grown on DyScO₃

a_{KTO}=3.989 Å, a_{SLCO}~3.985 Å a_{DSO(110)}=3.944 Å, a_{SLCO}~3.955 Å

On BaTiO₃- buffered (001) SrTiO₃ <u>BaTiO₃ (BTO)</u>:

 $T_d = 700-850 \text{ °C}$ $P_d = 0.10 \text{ mbar } O_2$ Post-deposition annealing: -15 min @ 950°C, under 0.10 mbar O_2 , and 30 min @ 950°C, in vacuum (10⁻⁷ mbar)

<u>Sr_{1-x}La_xCuO₂ (SLCO)</u>:

 $T_d = 550-600 \text{ °C}$ $P_d = 0.20 \text{ mbar } O_2$ Post-deposition annealing (reduction): 45-60 min @ 550 °C, in vacuum (10⁻⁷ mbar)

T_c: up to 21 K

Film's composition ($x_t = 0.15$ target), from RBS data: $x_f = 0.145$

 a_{STO} =3.905 Å, a_{BTO} ~3.990 Å, a_{SLCO} ~3.967 Å

Tomaschko, Leca, Selistrovski, Diebold, Jochum, Kleiner, Koelle, Phys. Rev. B 85 (2012)

ICSM 2014 29.04.2014 pg. 06/14

$Sr_{1-x}La_{x}CuO_{2}$ (x \approx 0.15) grown on BaTiO₃/SrTiO₃ (001)

5.0kV X600 10µm WD 7.7mm

Deposition conditions for BaTiO₃:

 T_d =750°C, P_d =0.10 mbar O_2 , E_d =1.75 J/cm²; annealing 15 min/950°C/0.10 mbar O_2 and 30 min/950°C/10⁻⁷ mbar Tomaschko et al., Phys. Rev. B 85 (2012)

$Sr_{1-x}La_xCuO_2$ (x ≈ 0.15) grown on BaTiO₃/SrTiO₃ (001)

600 400

200 0

750

800

850

_{nta}=0.15

900 energy (keV)

RBS data

950

La

1000 1050 1100

No presence of secondary phase; tetragonal, IL-type structure; preferential orientation (c-axis)

Deposition conditions for $Sr_{1,y}La_xCuO_2$: T_{d} =550°C, 0.30 mbar O₂; annealing 50 min/550°C/10⁻⁷ mbar $T_{c,0}=10-21$ K; $J_{c,0,4,2K}=2.1\times10^{6}$ A/cm² Tomaschko et al., Phys. Rev. B 85 (2012)

$Sr_{1-x}La_{x}CuO_{2}$ (x \approx 0.15) grown on BaTiO₃/SrTiO₃ (001)

HRXRD (a-c) and XRD (d) data for a BTO/SLCO film with d_{BTO}=35 nm *Misfit strain accommodation by lattice modulations Two components in ω scans: strained and relaxed*

Buffer layer thickness dependent microstructure: - lattice modulations visible **only** in the HRXRD scans and for $d_{BTO} > 30$ nm h

HRXRD: triple axes configuration XRD: double axes configuration

Migration of the structural defects at the BTO/STO interface due to high temperature annealing

Terai et al., APL 80 (2002)

ICSM 2014 29.04.2014 pg. 09/14

$Sr_{1-x}La_{x}CuO_{2}$ (x \approx 0.15) grown on KTaO₃ (001)

ICSM 2014 29.04.2014 pg. 10/14

$Sr_{1-x}La_{x}CuO_{2}$ (x \approx 0.15) grown on DyScO₃ (110)

ICSM 2014 29.04.2014 pg. 11/14

HRTEM results on $Sr_{1-x}La_xCuO_2$ (x ≈ 0.15) film

ICSM 2014 29.04.2014 pg. 12/14

Pairing symmetry from phase sensitive experiments

exhibits an additional π shift in its phase).

The I_c vs. H shows a minimum at H=0 for the π -SQUID due to the phase shift across the π -junction.

Predominantly $d_{x^2-y^2}$ pairing symmetry

Schulz et al., APL 76 (2000); Chesca et al., PRL 90 (2003)

Tomaschko et al., Phys. Rev. B 86 (2012) ICSM 2014 29.04.2014 pg. 13/14

magnetic field, $\mu_{a}H(\mu T)$

2

-1

-10

-15

-20

-2

Conclusions

- the superconducting properties of the PLD grown electron-doped $Sr_{1-x}La_xCuO_2$ thin films are still far of those of the bulk or of the MBE grown films; however, higher phase stability can be achieved by PLD (in the over doped region);

- epitaxial strain controls the initial growth mechanism and, as a result, the final microstructural (structural defects and oxygen network) and transport properties of the films;

- the films grown on (110) $DyScO_3$ show almost perfect epitaxy; structural defects present in the films grown on KTaO₃ help in removing the excess oxygen, these films showing the best superconducting properties;

- no zero bias conductance peak observed in grainboundary junctions, but phase sensitive experiments shown a predominantly d-wave order parameter symmetry in $Sr_{0.85}La_{0.15}CuO_2$ films.

Deutsche Forschungsgemeinschaft (project KL 930/11)

Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PNII-ID-PCE-2011-3-1065

European Commission under the FP7 Capacities programme (EUMINAfab project number 1090)