Defects network and transport properties in electron-doped Sr_{1-x}La_xCuO₂ thin films grown by laser ablation M. Danila¹, V. Leca^{1,2}, J. Tomaschko³, D. Wang⁴, W. M. Arnoldbik⁵, R. Kleiner³, and D. Koelle³

¹National Institute for Research and Development in Microtechnologies, Bucharest, Romania ²Extreme Light Infrastructure – Nuclear Physics (ELI-NP), IFIN-HH, Bucharest-Magurele, Romania ³Physikalisches Institut and Center for Collective Quantum Phenomena in LISA⁺, Universität Tübingen, Germany ⁴Karlsruher Institut für Technologie, Institut für Nanotechnologie, Karlsruhe, Germany ⁵Detect99, www.detect99.nl, Eindhoven, The Netherlands

I. Motivation

The electron-doped infinite-layer (IL) compounds $Sr_{1-x}Ln_xCuO_2$ (*Ln* = La, Pr, Nd, Sm, Gd) have the highest T_c among electron-doped cuprate superconductors and the simplest crystal structure of any cuprate superconductor [1], but dificulties in fabricating single-phase thin films hampered the investigation of their basic properties, such as the order parameter symmetry.

Superconducting single-crystalline $Sr_{1-x}La_xCuO_2$ (x=0.125-0.15) thin films, with a tetragonal, infinite-layer type structure, were grown by means of pulsed laser deposition (PLD) on BaTiO₃-buffered SrTiO₃(100) and on $KTaO_3(100)$ substrates.

To improve the morphology and to fully relax the BTO film, they were annealed in-situ at 900 – 950 °C and 10^{-7} mbar, for 30 min [7].

VI. $Sr_{0.875}La_{0.125}CuO_2$ films grown on KTO substrates

Stoichiometry and morphology:

Damped RHEED oscillations of the specular spot during deposition of BTO and SLCO indicate a Stranski-Krastanov growth mode.

Crystal structure:

crystallographic quality have been grown on as-received KTO-substrates.

Microstructure

Deposition parameters:

	<i>T</i> _d (°C)	P _{d,O2} (mbar)	<i>E</i> _L (mJ)	d _{TS} (mm)	f (Hz)
BaTiO ₃	650-750	1 x 10 ⁻¹	110 ^(*)	65	2
Sr _{0.875} La _{0.125} CuO ₂	550-600	4 x 10 ⁻¹	110 - 130	60	2
				(*) ~ 2 J/cm ²

III. Crystal structure

		symmetry	<i>a</i> (A)	<i>c</i> (A)
Sr / Ln	Sr _{0.9} La _{0.1} CuO ₂ (bulk) [2]	tetragonal	3.949	3.415
	Sr _{0.9} La _{0.1} CuO ₂ (on KTaO ₃) [3]	tetragonal	3.976	3.397
	KTaO₃	cubic	3.988	3.988
	SrTiO ₃	cubic	3.905	3.905
O Cu	BaTiO ₃	tetragonal	3.996	4.029

<u>с</u>.

ntensity

c/a

Comparison BTO/STO- KTO-substrates:

SLCO films on BTO-buffered STO substrates need additional annealing time to remove the excess oxygen compared to films on KTO:

• The major challenge in growing superconducting SLCO films is to achieve simultaneously full oxidation of the copper oxide planes and absence of interstitial oxygen in the $Sr_{1-x}La_x$ interlayers. Therefore, different postdeposition vacuum annealing steps (in-situ, ex-situ) have been successfully used. • For SLCO films on BTO/STO, one main problem to be solved is the inferior epitaxial strain. • Further investigations are necessary to improve T_c ($T_{c.max} = 43$ K [2]), e.g. different deposition temperature, pressure, target-substrate distance, laser energy. • Use different doping levels (x = 0.10, 0.15). • Use different materials as buffer layer (e.g. KTO on STO) to maintain enhanced epitaxial strain.

IV. BaTiO₃ buffer layer

BTO buffer layers are deposited on STO substrates in order to enhance the electron-doping effect of the copper oxide planes of $Sr_{1-x}La_xCuO_2$ by tensile strain [4,5].

SrTiO₃

Narrow rocking curves with typical widths (FWHM) smaller than 0.1° and interference fringes around the (001) and (002) reflections were measured, indicating high crystallographic quality of the BTO films.

AFM

• TEM analysis to identify oxygen vacancies and excess oxygen.

Tc,onset Tc,zero 20 ک 15 ⊢ 10 onset 0,864 0.856 0,860 0,868 [6]

 ω ()

 ω (°)

(002) Sr_{0.855}La_{0.145}CuO₂

26.6 26.8 27.0 27.2 27.4

VIII. References

M. G. Smith *et al.*, Nature **351**, 549 (1991) N. Ikeda *et al.*, Physica C **210**, 367 (1993) S.-I. Karimoto et al., Physica C 412, 1349 (2004) J.T. Markert *et al.*, Proc. SPIE **4058**, 141 (2000) S.-I. Karimoto et al., Appl. Phys. Lett. 79, 2767 (2001) V. Leca et al., Appl. Phys. A 93, 779 (2008) K. Terai *et al.*, Appl. Phys. Lett. **80**, 4437 (2002) V. Leca et al., Appl. Phys. Lett 89, 092504 (2006)

This work has been supported from EU, Romanian, and Germany research funds.