Closing the circle: d-wave order parameter symmetry in the electron-doped Sr_{1-x}La_xCuO₂ superconductors

Victor Leca

National Institute for Research and Development in Microtechnologies, Bucharest, Romania

*Present work address: Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Bucharest, Romania

TO BE Spring Meeting 2015 - pg 01/26

Collaborators

Prof. Dieter Koelle, Univ. Tübingen Prof. Reinhold Kleiner, Univ. Tübingen Dr. Jochen Tomaschko, (former at) Univ. Tübingen

Prof. Dave Blank, Univ. Twente Prof. Guus Rijnders, Univ. Twente

- Dr. Mihai Danila, IMT Bucharest
- Dr. Di Wang, Karlsruhe Institute of Technology
- Dr. Wim Arnold Bik, AccTec BV, Technical Univ. Eindhoven

Acknowledgements

Deutsche Forschungsgemeinschaft (project KL 930/11)

Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PNII-ID-PCE-2011-3-1065

European Commission under the FP7 Capacities programme (EUMINAfab project number 1090)

Outline

1. Correlation between strain, microstructure, and electrical transport properties in $Sr_{1-x}La_xCuO_2$ (SLCO, x=0.10-0.175) thin films grown by PLD on different substrates (KTaO₃, SrTiO₃, and DyScO₃)

- 2. Sr_{1-x}La_xCuO₂ (x=0.125-0.15) Josephson junctions:
 - grain-boundary junctions based on c-axis oriented films
 - ramp-type SLCO/Au/Nb junctions

3. Order parameter symmetry – phase sensitive tunneling experiments based on $0/\pi$ -SQUIDs (on SrTiO₃ tetracrystals)

Is d-wave symmetry inherent to cuprate superconductivity?

Superconductor 2

SLCO plume

Requirements for Sr_{1-x}La_xCuO₂-based junctions

Single phase, c-axis oriented films required

Single phase, c-axis oriented SLCO films, with smooth surface and sharp oxide-metal interface required

Role of the substrate-film interface (oxidation method)

$Sr_{1-x}La_xCuO_2$ grown on as-received (001) KTaO₃

XRD, HRTEM: Structural defects/secondary phases developing at the substrate-film interface RHEED, AFM: 3D growth mode induced by the high interface roughness $Sr_{1-x}La_xCuO_2$ grown on BaTiO₃-buffered (001) KTaO₃

XRD, HRTEM, AFM: single-phase, reduced density of structural defects, improved morphology RHEED, AFM: 2D growth mode

Leca, PhD thesis (2003), Leca et al. APL 89 (2006)

TO BE Spring Meeting 2015 - pg 07/26

Improved substrate morphology – SrTiO₃ and KTaO₃

SrTiO₃ structure

KTaO₃

as-received substrate

a) as-received substrate; b) after chemical treatment (BHF) and annealing $(950^{\circ}C/1h/O_2) - TiO_2$ termination c) after annealing $(950^{\circ}C/1h/O_2) - SrO$ termination

after annealing at 750°C/O₂/1h

Kawasaki et al. Science 226 (1994); Koster et al. APL 73 (1998); Leca, PhD thesis (2003)

TO BE Spring Meeting 2015 - pg 08/26

$Sr_{1-x}La_{x}CuO_{2}$ (x \approx 0.15) growth parameters

On (001) KTaO₃ and (110) DyScO₃ <u>Sr_{1-x}La_xCuO₂ (SLCO)</u>:

 $T_d = 500-575 \circ C$ $P_d = 0.20-0.40 \text{ mbar } O_2$ Post-deposition vacuum annealing (reduction) at T_d and 10^{-7} mbar:

- 10-20 min (KTaO₃ case)
- 20-30 min (DyScO₃ case)

 T_c : up to 24 K, on KTaO₃ up to 18 K, on DyScO₃

Film's composition ($x_t=0.15$ target), from RBS data:

- $x_f = 0.145$, film grown on KTaO₃ - $x_f = 0.135$, film grown on DyScO₃

a_{KTO}=3.988 Å, a_{SLCO}~3.978 Å a_{DSO(110)}=3.944 Å, a_{SLCO}~3.950 Å **On BaTiO₃- buffered (001) SrTiO₃** <u>BaTiO₃ (BTO)</u>:

 $T_d = 700-850 \text{ °C}$ $P_d = 0.10 \text{ mbar } O_2$ Post-deposition annealing: -15 min @ 950°C, under 0.10 mbar O_2 , and 30 min @ 950°C, in vacuum (10⁻⁷ mbar)

<u>Sr_{1-x}La_xCuO₂ (SLCO)</u>:

 $T_d = 550-600 \text{ °C}$ $P_d = 0.20 \text{ mbar } O_2$ Post-deposition annealing (reduction): 45-60 min @ 550 °C, in vacuum (10⁻⁷ mbar)

T_c: up to 21 K

Film's composition ($x_t = 0.15$ target), from RBS data: $x_f = 0.145$

a_{STO}=3.905 Å, a_{BTO}~3.990 Å, a_{SLCO}~3.967 Å

Tomaschko, Leca, Selistrovski, Diebold, Jochum, Kleiner, Koelle, Phys. Rev. B 85 (2012)

Tomaschko, Leca, Selistrovski, Diebold, Jochum, Kleiner, Koelle, Physical Review B 85 (2012)

TO BE Spring Meeting 2015 - pg 10/26

$Sr_{1-x}La_xCuO_2$ (x=0.15) grown on $BaTiO_3$ /SrTiO₃ (001)

The BaTiO₃ buffer layer

Deposition conditions for BaTiO₃: $T_d=750^{\circ}$ C, $P_d=0.10$ mbar O₂, $E_d=1.75$ J/cm²; 30 min/950°C/10⁻⁷ mbar

> Tomaschko, Leca, Selistrovski, Diebold, Jochum, Kleiner, Koelle, Phys. Rev. B 85 (2012)

> > TO BE Spring Meeting 2015 - pg 11/26

TO BE Spring Meeting 2015 - pg 12/26

Role of the epitaxial strain

HRTEM results on $Sr_{1-x}La_xCuO_2$ (x \approx 0.15) film

HRTEM results on $Sr_{1-x}La_xCuO_2$ (x \approx 0.15) film

TO BE Spring Meeting 2015 - pg 16/26

Josephson junctions: fabrication and transport properties

a) ICVs: resistively and capacitively shunted junction (RCSJ)-like, with no significant excess current; - J_c (@ 4.2 K) ~ 1.2 kA/cm² – 1-2 orders of magnitude above J_c of 24° GB based on NCCO and LCCO

b) highly regular Fraunhofer-like patterns for different voltage criterion

 c) conductance spectra did not show a zero-bias conductance peak. s-wave symmetry?
but the V-shaped of the spectra in the subgap regime may indicate an order parameter with nodes

Tomaschko, Leca, Selistrovski, Kleiner, Koelle, Phys. Rev. B 84 (2011)

TO BE Spring Meeting 2015 - pg 19/26

Sr_{1-x}La_xCuO₂ 30° symmetric grain boundary junctions

XRD (a,c) and HRXRD (b, d) data for BTO/SLCO films grown on 30° GB

XRD scans in double (one monochromator) and triple (two monochromators) axes configuration showing the presence of dislocations in the (buffer) $BaTiO_3$ and SLCO layers.

HRXRD: triple axes configuration XRD: double axes configuration

Leca, Tomaschko, Danila, Kleiner, Koelle, unpublished

Phase sensitive experiments using π -SQUIDs

Pairing symmetry from phase sensitive experiments

Schematic layout of the 0 - and π-SQUIDs

Design of a dc-SQUID

Geometry designed to be frustrated for d-wave pairing.

If d-wave: the dc-SQUID ring around the tetracrystal point contains one 0-junction and one π -junction (forming the π -SQUID, which exhibits an additional π shift in its phase).

Phase-sensitive experiments rely on sign change in the Josephson I_c (a qualitative signature of unconventional Sc), and not on quantitative magnitude of the I_c .

Tsuei et al. RMP 72 (2000)

[Schulz et al., APL 76 (2000); Chesca et al., PRL 90 (2003)]

Pairing symmetry from phase sensitive experiments

Conclusions

The superconducting properties of the PLD grown electron-doped $Sr_{1-x}La_xCuO_2$ thin films are still far of those of the bulk or of the MBE grown films; however, higher phase stability can be achieved by PLD (in the over doped region).

No zero bias conductance peak observed in grainboundary junctions, most probably due to oxygen vacancies along the grain boundary.

Phase sensitive experiments shown a predominantly d-wave order parameter symmetry in the $Sr_{1-x}La_xCuO_2$ (x ~ 0.15) thin films.

