Ultra-sensitive optical sensor system for simultaneous, in-situ detection of multiple pesticides in surface and ground waters

  ❚  Eng  ❚ 

Project ID: STARDUST
Contract: 56 din 01/03/2024(COFUND-WATER4ALL-STARDUST-2)
Project Type: International
Project Program: COFUND-WATER4ALL
Project Title: Ultra-sensitive optical sensor system for simultaneous, in-situ detection of multiple pesticides in surface and ground waters - Sistem ultrasensibil de senzori optici pentru detecția simultana de specii multiple de pesticide din apele subterane si de suprafață
Funded by: Romanian National Authority for Scientific Research, UEFISCDI
Contractor: National Institute for Research and Development in Microtechnologies -IMT Bucharest
Total value from the budget: 521.950,00 Ron
Total co-financing (own contribution): 0
Total EU contribution: 28.050,00 Ron
Total value of the contract: 550.000,00 Ron
Start Date: 1 March, 2024
End Date: 28 February, 2027
Poject coordinator: Dr. Karolina Barbara Milenko-Kuszewska, SINTEF, Norway
Project Responsible: Dr. Adrian Dinescu, IMT Bucharest, Romania
Project Consortium leader: SINTEF, Norway;
Consortium partners: National Institute for Research and Development in Microtechnologies –IMT, Romania; National Institute of Materials Physics, Romania; Institute of Physical Chemistry, Polish Academy of Sciences; Dublin City University, Ireland; Technical University of Denmark, Denmark


Abstract:


Hydro-climatic extremes, such as droughts and floods, have increased due to climate change and could lead to severe impacts on socio-economic, structural, and environmental sectors. Soil water assessment models have shown that pesticides are transported into waterways because of intense rainfall events. Current monitoring methods are not suited to the detection of such water quality impacts, which can deplete invertebrate populations and impact biodiversity and ecosystem health very rapidly. Many surface- and groundwaters are used as sources of drinking water, and therefore the occurrence of chemicals is problematic for water treatment facilities. Rapid, real-time sensing technologies do not exist yet but are urgently needed to address this. In October 2022 revisions to the priority pollutant Annex to the Water Framework Directive (WFD), saw the addition of noenicitinoid and pyrethroid pesticides, showing that pesticides are of growing concern. The STARDUST project aims to develop a first-of-its-kind, integrated optical system combined with smart spectral data processing methodology, for multiplexed monitoring of pesticides in surface and ground waters, and to understand the impact of extreme hydroclimatic events on water quality in the context of pesticides occurrence. We will develop a sensor based on surface-enhanced Raman spectroscopy fully integrated with microfluidics targeting the detection of pesticides, pesticide mixtures, and metabolites in surface and ground waters. Secondly, we will use rainfall forecasts to identify sampling times for passive sampling and citizen scientist co-created events, to gather samples that are specifically linked to rainfall events. This will build on existing monitoring programmes, but, more critically, will identify the climate-related water quality impacts. The results of passive sampling will identify target pesticide compounds to be addressed with the developed
novel sensor and a database of detected pesticides will be compiled and shared publicly. The STARDUST project translates several technological advances into an innovative solution for discrimination between safe and contaminated water continuously and in real time. We envision that in the long run, any strategies for mitigation of the hydro-climatic extreme events will need to rely on digitalization and sensors. The proposed activities will benefit a wide range of “problem owners” and society by responding to the need for continuously clean water (SDG 6). Pesticide detection is only one of the existing problems. The proposed solution is also applicable to other harmful compounds adding value and impact. STARDUST primarily targets the topic 2 of the call by proposing physical and digital solutions for “smartening the water system”, but also contributes to the topic 1 as the development will be carried out in the context of adaptation and mitigation strategies to cope with hydro-climatic extreme events, and both experts on the analysis of surface and ground waters are involved.


Consortium:


Project Consortium leader: Dr. Karolina Barbara Milenko-Kuszewska, SINTEF, Norway
Consortium principal investigators :
Dr. Adrian Dinescu , National Institute for Research and Development in Microtechnologies –IMT, Romania
Dr. Oana Rasoga, National Institute of Materials Physics, Romania
Dr. Konrad Giżyński, Institute of Physical Chemistry, Polish Academy of Sciences
Prof. Dr. Fiona Regan, Dublin City University, Ireland
Prof. Dr. Hans-Jørgen Albrechtsen, Technical University of Denmark, Denmark


IMT Bucharest Team


CSI. Adrian Dinescu,Principal Investigator;                         
CSI. Angela – Mihaela Baracu, WP2 leader;                       
CSI. Raluca Muller, Documentation and SERS processing;
CSIII. Oana Brancoveanu, SEM analysis;
CSIII. Gabriel Craciun, Cleanroom techniques and processes;
CS III. Raluca Gavrila, AFM measurements;
CSIII. Florin Comanescu, Raman measurements;
Technician;


Results:


Results 2025:

During this stage, IMT Bucharest fabricated SERS structures based on four different configurations. The differences between these consisted of varying the dimensions, orientation, and spacing of the semi-circle type structures. Another structure type included circles with a 30 nm radius and varying inter-structure distances: 100/150/200 nm. The patterned SERS areas varied depending on the fabrication difficulty of the structures. For the semi-circle-based configurations, the patterned areas were 250 µm × 250 µm and 500 µm × 500 µm, while for the circular structures, the area was larger, at 1 mm × 1 mm.

The SERS structures were fabricated using Electron Beam Lithography (EBL). The main technological steps consisted of spin-coating and EBL patterning of the resist layer (PMMA) and its development, followed by the evaporative deposition—using the Temescal FC-2000 equipment (Temescal, USA)—of a 60 nm thick metallic film (5 nm of Ti used as an adhesion layer and 55 nm of Au). Finally, the desired configuration was obtained by dissolving the resist together with the overlying metal in acetone (lift-off process).

In the final step, the structures were coated with a thin Au film, deposited by vacuum evaporation, to generate the plasmonic effect. During the technological process optimization stage, several thicknesses for the final metallic layer were tested (20/40/60/80 nm); Raman characterization results highlighted that the optimal thickness is 60 nm.

During processing, all types of structures were morphologically evaluated using Scanning Electron Microscopy (SEM). The SERS structures were patterned on 30 mm × 10 mm chips, and the configured areas were positioned in the center of the chip to align with the microfluidic system configuration and facilitate subsequent assembly.

The SERS structures were sent to partners SINTEF and INCDFM for further Raman characterizations. The C80 SERS structures were tested using thiabendazole and rhodamine 6G, and the results obtained were disseminated at the EUROSENSORS XXXVII conference.

Romanian language: În cadrul acestei etape, IMT București a fabricat structuri SERS bazate pe 4 configurații diferite. Diferențele dintre acestea au constat în varierea dimensiunilor structurilor de tip semicerc, orientarea lor și spațierea acestora. Un alt tip se structură a cuprins cercuri cu raza de 30 nm și cu distanțe diferite între acestea: 100/150/200 nm. Ariile SERS configurate au variat, în functie de gradul de dificultate în fabricarea structurilor. Pentru configurațiile bazate pe semicercuri, ariile configurate au fost de 250 mm × 250 mm și 500 mm × 500 mm, în timp ce pentru structurile cu cercuri aria a fost mai mare, de 1mm × 1mm. Structurile SERS au fost fabricate folosind litografia cu fascicul de electroni (EBL). Principalele etape tehnologice au constat în etalarea și configurarea prin EBL a stratului de rezist (PMMA), developarea acestuia, urmată de depunerea prin evaporare, folosind echipamentul Temescal FC-2000 (Temescal, SUA), a unui film metalic cu grosimea de 60 nm (5 nm de Ti folosit ca strat de aderență și 55 nm de Au) și în final, obținerea configurație dorite prin dizolvarea rezistului împreună cu metalul de deasupra în acetonă (procesul lift-off). La final, structurile au fost acoperite cu un film subțire de Au, depus prin evaporarea în vid, pentru a genera efectul plasmonic. În etapa de optimizare a procesului tehnologic s-au testat mai multe grosimi pentru stratul metalic final (20/40/60/80 nm), iar în rezultatele caracterizărilor Raman au pus în evidența că grosimea optimă este de 60 nm. În timpul procesării, toate tipurile de structuri au fost evaluate morfologic, folosind microscopia cu fascicul de electroni (SEM). Structurile SERS au fost trasate în cipuri cu dimensiuni de 30 mm × 10 mm, iar zonele configurate au fost poziționate în centrul cipului, pentru a se potrivi cu configurația sistemului microfluidic și pentru asamblarea ulterioară. Structurile SERS au fost trimise la partenerii SINTEF și INCDFM pentru caracterizări Raman ulterioare. Structurile SERS C80 au fost testate folosind tiabendazolul și rodamina 6G, iar rezultatele obținute au fost diseminate la conferința EUROSENSORS XXXVII.

Results 2024

During this stage, IMT Bucharest fabricated SERS structures based on four different configurations. The differences between these consisted of varying the dimensions, orientation, and spacing of the semi-circle type structures. Another structure type included circles with a 30 nm radius and different inter-structure distances: 100/150/200 nm. The configured SERS areas varied depending on the fabrication difficulty of the structures. For the semi-circle-based configurations, the patterned areas were 250 µm × 250 µm and 500 µm × 500 µm, while for the circular structures, the area was larger, at 1 mm × 1 mm.

The SERS structures were fabricated using Electron Beam Lithography (EBL). The main technological steps consisted of spin-coating and EBL patterning of the resist layer (PMMA) and its development, followed by the evaporative deposition—using the Temescal FC-2000 equipment (Temescal, USA)—of a 60 nm thick metallic film (5 nm of Ti used as an adhesion layer and 55 nm of Au). Finally, the desired configuration was obtained by dissolving the resist together with the overlying metal in acetone (the lift-off process). At the end, the structures were coated with a thin Au film, deposited by vacuum evaporation, to generate the plasmonic effect. During the technological process optimization stage, several thicknesses for the final metallic layer were tested (20/40/60/80 nm), and the Raman characterization results highlighted that the optimal thickness is 60 nm.

During processing, all types of structures were morphologically evaluated using Scanning Electron Microscopy (SEM). The SERS structures were patterned on 30 mm × 10 mm chips, and the configured areas were positioned in the center of the chip to match the microfluidic system configuration and for subsequent assembly.

The SERS structures were sent to partners SINTEF and INCDFM for further Raman characterizations. The C80 SERS structures were tested using thiabendazole and rhodamine 6G, and the results obtained were disseminated at the EUROSENSORS XXXVII conference.

Romanian language: În cadrul acestei etape, IMT București a fabricat structuri SERS bazate pe 4 configurații diferite. Diferențele dintre acestea au constat în varierea dimensiunilor structurilor de tip semicerc, orientarea lor și spațierea acestora. Un alt tip se structură a cuprins cercuri cu raza de 30 nm și cu distanțe diferite între acestea: 100/150/200 nm. Ariile SERS configurate au variat, în functie de gradul de dificultate în fabricarea structurilor. Pentru configurațiile bazate pe semicercuri, ariile configurate au fost de 250 mm × 250 mm și 500 × 500 micrometri, în timp ce pentru structurile cu cercuri aria a fost mai mare, de 1mm × 1mm.
Structurile SERS au fost fabricate folosind litografia cu fascicul de electroni (EBL). Principalele etape tehnologice au constat în etalarea și configurarea prin EBL a stratului de rezist (PMMA), developarea acestuia, urmată de depunerea prin evaporare, folosind echipamentul Temescal FC-2000 (Temescal, SUA), a unui film metalic cu grosimea de 60 nm (5 nm de Ti folosit ca strat de aderență și 55 nm de Au) și în final, obținerea configurație dorite prin dizolvarea rezistului împreună cu metalul de deasupra în acetonă (procesul lift-off). La final, structurile au fost acoperite cu un film subțire de Au, depus prin evaporarea în vid, pentru a genera efectul plasmonic. În etapa de optimizare a procesului tehnologic s-au testat mai multe grosimi pentru stratul metalic final (20/40/60/80 nm), iar în rezultatele caracterizărilor Raman au pus în evidența că grosimea optimă este de 60 nm.
În timpul procesării, toate tipurile de structuri au fost evaluate morfologic, folosind microscopia cu fascicul de electroni (SEM). Structurile SERS au fost trasate în cipuri cu dimensiuni de 30 mm × 10 mm, iar zonele configurate au fost poziționate în centrul cipului, pentru a se potrivi cu configurația sistemului microfluidic și pentru asamblarea ulterioară.
Structurile SERS au fost trimise la partenerii SINTEF și INCDFM pentru caracterizări Raman ulterioare. Structurile SERS C80 au fost testate folosind tiabendazolul și rodamina 6G, iar rezultatele obținute au fost diseminate la conferința EUROSENSORS XXXVII.


Publication and Events:


  1. I. -A. Baragau, O. Rasoga, A. Costas, H. -J. Albrechtsen, K. Gizynski, K. Milenko, E. Vereshchagina, J. Jose – SINTEF, F. ReganMP72 – Establishing a Raman spectra database for the detection of Terbuthylazine metabolites using SERS-based optical sensors,  pages: 347-348, pending doi: 10.5162/EUROSENSORS2025/MP72, ISBN: 978-3-910600-07-2
  2. A. M. Baracu, A. Dinescu, K. Milenko-Kuszewska,O. Rasoga, I. -A. BaragauTP7 – Metasurface development for SERS-based optical sensors, pages: 363-364 pending doi: 10.5162/EUROSENSORS2025/TP7, ISBN: 978-3-910600-07-2

Contact


Institutul National de Cercetare-Dezvoltare pentru Microtehnologie- IMT Bucuresti
126A, Erou Iancu Nicolae Street, 077190, Voluntari, Ilfov, ROMANIA
Tel: +40-21-269.07.70; +40-21-269.07.74;
Fax: +40-21-269.07.72; +40-21-269.07.76;
Website: www.imt.ro; E-mail: office@imt.ro